

Research Challenges and Opportunities towards Safe Autonomous Driving

Chih-Hong Cheng

Corporate R&D

Before I start

- Some of the contents may be of my personal view and shall not be viewed as official statement of DENSO
- Some presented work are based on prior results during my tenure at fortiss

Source: www.fortiss.org

The race towards automated driving continues

OEM BMW, VW, Toyota, ... Classical Tier-1 ZF, Continental, Bosch, suppliers DENSO, ... **New-comers** Google, Intel, Nvidia, ... Uber, Lyft, Zoox, Five.AI, Startups Oxbotica....

Safe autonomy is the destination

Source: Ytoutube (abc news)

There is a gap between running demos and safe products

But it's a money burning business

Starsky Robotics

'EAM COMPANY NEWS | WE'RE HIRING

The End of Starsky Robotics

Source: Medium

In 2015, I got obsessed with the idea of driverless trucks and started Starsky Robotics. In 2016, we became the first street-legal vehicle to be paid to do real work without a person behind the wheel. In 2018, we became the first street-legal truck to do a fully unmanned run, albeit on a closed road. In 2019, our truck became the first fully-unmanned truck to drive on a live highway.

And in 2020, we're shutting down.

And competition is fierce

Source: CNBC

Source: www.theverge.com

Source: MOTOR AUTHORITY

Safe autonomy is the destination

Source: Ytoutube (abc news)

We may close this gap quicker by scientific-driven methods (e.g., from "miles" to "intelligent miles")

Opportunities

Engineering tool provider and component provider for chasing competitors

 Use total solution development as a learning process to validate the concept, but no need to be perfect in the solution

/* Selling hardware & EDA tools */

Agenda

- Background
- DNN safety in automated driving
- Concluding remarks

Methodology

Data quality

Robust training

Formal Verification

Runtime monitoring

Why can my DNN go wrong?

Average-case vs worst-case mindset

Being lazy in data collection (Garbage-in-garbage-out)

Very hard question

...

Surprises in Operating Design Domain (ODD) ...

Maybe we should think systematically

Specification, data collection & labelling

Architectural design & training

testing /generalization

Operation

GSN for DNN safety argumentation

Addressing the DNN Safety via a Structured Approach

Systematically decompose problems into subproblems

Use scientific methods to provide elegant solutions (as evidences) to these problems

Great battlefield for AI/ML/Safety/SE/FM researchers

Limitations

- 1. Currently, everyone (research institute, company, certification body) wants to have his "own" GSN
- This is of course a waste of efforts
- Also, it makes sense to focus on "what to be addressed", and leave the "how" part open for creativity until best practice is out
- 2. GSN is nothing logical

GSN for DNN safety argumentation

Methodology

Data quality

Robust training

Formal Verification

Runtime monitoring

Coverage problem

Combinatorial explosion of scenarios

One possible assignment of "discrete environment operating condition" creates one scenario

Weather: Sunny/Cloudy/Rainy

Curve: Straight/Curvy

Oncoming Car: True/False

Forward Car: True/False

30 discrete operating conditions => 2^{30} (1 billion) scenarios for testing

- You have definitely more!
- Such a denominator is huge, making most of the "coverage criterion" generate value ≈ 0

Question: Can we have a knob to tune?

"completeness" more meaningful

"simpler to achieve 100%"

Weaker form of "completeness"

The system under analysis takes 3 Boolean inputs x,y,z-a total of 8 input combinations (2^3)

 Each red box is a test case, so we only cover 4/8

But whenever we look at xy hyperplane (via projection), the hyperplane is **fully covered** in red

Similarly for yz and xz

By fixing number of parameters to be chosen (in this case k=2), we still get a **weaker form** of completeness with polynomially bounded test cases

Combinatorial testing and coverage arrays

Operating conditions

Weather: Sunny/Cloudy/Rainy

Curve: Straight/Curvy

Oncoming Car: True/False

Forward Car: True/False

Combinatorial testing for kprojection: all test cases should cover all possible operating condition tuple

Given k being a constant, the number of test cases needed is **polynomially bounded**, $\binom{n}{k}$ 2^k

(Sunny, Curvy, Oncoming, No Forward)

		St	raight	Cui	ſvy	
	Sunny					
	Cloudy					
	Rainy					
			Straight		Curv	/y
ncoming (yes)						
ncoming (no)						

	Oncoming (yes)	Oncoming (No)
Sunny		
Cloudy		
Rainy		

	Straight	Curvy
Forward (yes)		
Forward (no)		

	Forward (yes)	Forward (No)
Sunny		
Cloudy		
Rainy		

	Oncoming (yes)	Oncoming (No)
Forward (yes)		
Forward (no)		

For autonomous driving, things may be a bit more complicated

- Certain combination of operating conditions (expressed as domain knowledge) may not be feasible, and one should not consider it
 - K-projection coverage + constraint in the domain
- One would like to place different emphasis over different scenarios
 - K-projection coverage + quantitative aspects
- In the paper, we consider these two extensions at once

Result

Data collected for OEM X highway pilot project (during my tenure at fortiss)

- Used in testing
- Used in assume-guarantee verification

Limitation

- There seems to be some further improvements in specification + data collection, e.g.,
 - Disciplined method for data labelling and the effect on uncertainty
 - If you have some error in labelling bounding boxes, it makes no sense to pursue prediction perfection
 - Class imbalance and their mediation
 - Quantifying similarity measure between simulation engine and reality, and to understand their impact

Methodology

Data quality

Robust training

Formal Verification

Runtime monitoring

Provably Robust Training

Standard training techniques are subject to noise and adv. attacks

Provably robust DNN training technique can resist attacks

Behind provably robust training

Provably Robust DNN Training

Standard DNN training

New neuron layers with symbolic bound propagation techniques

(to estimate the worst-case effect due to perturbation)

New robust loss function

(to understand if the worst-case effect is contained inside the allowed tolerance)

Limitation

 Going beyond bit-level perturbation into feature-level perturbation

The robust-accuracy tradeoff

 Even with zero loss (in the training dataset), the created provable guarantees will still be lost if you are not careful in post-processing algorithms (such as non-max suppression; see SafeComp'20)

Methodology

Data quality

Robust training

Formal Verification

Runtime monitoring

Runtime monitoring

Decision supported by prior similarities in training?

Not too comfortable (action needed)

We might need a bag of techniques

abstraction

Not too comfortable (action needed)

Abstraction-based monitor: if "not too comfortable", then it is truly problematic

We might need a bag of techniques

We might need a bag of techniques

Arsenal

- Abstraction based on neuron activation patterns (value bounds, activation sequences)
- Drop-out and majority vote
- Noise and majority vote
- Autoencoder with reconstruction loss
- ...

Limitation

Things need to be scalable on 3D object detection

Methodology

Data quality

Robust training

Formal Verification

Runtime monitoring

Formal verification of neural networks

Summary of approaches (numerous papers in two years)

The ultimate challenge – Image from autonomous driving

For illustration only (not output from real network)

- Large input space
 - Lane detection: 400x150= 60k pixels (RGB)
 - MNIST: 28x28=784 pixels (greyscale)
- Information rich (beyond characters)

Verification in practice

E.g., we want to prove that "if the road bends to the left", the neural network path planner never output to steer to the right"

We need to handle

1. Specification problem

- What kind of input characterizes "the road bends to the left"
 They need to specified as constraints over input variables
- What kind of input characterize the ODD?
 - If you just use $[-1,1]^N$ (i.e., unconstrained), where N is the number of pixels, you very likely will get a counter example

2. Scalability problem

Static analysis won't give you the precision you need; exact methods via constraint solving can't scale that well

Learning input specifications for formal verification

Constraints over input variables → constraints over new output variables

Crafting the Core

ODD and scalable verification

- Characterizing ODD now turned into the boxed abstraction
 - The boxed abstraction, acting as an assumption, needs to be monitored in runtime (assume-guarantee reasoning)

Result and Limitations

In this work (together with an OEM), we were able to prove that <u>extremely bad things won't happen</u>

 E.g., if the road is bending hugely to the left, the decision won't suggest to go hugely to the right.

Limitations

- We couldn't prove that "bad things won't happen"
- Maybe formal verification is just a topic not applicable on perception
 - Pushing scalability may be an academic interest, but not for industry

Agenda

- Background
- DNN safety in automated driving
- Concluding remarks

Concluding remarks

Safety of automated driving is now the decisive factor

 We need a disciplined approach for engineering DNN to be used in autonomous driving

 Possible to borrow techniques from other fields (EDA, Control, SE, FM) to bring benefits

DENSO Crafting the Core