FoMLAS2020 preface

Preface

This volume contains the proceedings of FoMLAS’2020: the 3rd Workshop on Formal Methods
for ML-Enabled Autonomous Systems, held on July 21-24, 2020 in Los Angeles (virtually).
Each submission was reviewed by 2 program committee members. The committee decided to
accept 13 papers.

The FOMLAS workshop is the annual international workshop on formal methods and ma-
chine learning. The main goal of the workshop is to facilitate discussions on how formal meth-
ods can be used to increase predictability, explainability, and accountability of ML-enabled
autonomous system. The workshop program featured one invited talk by Chih-Hong Cheng,
and a VNNLIB discussion led by Armando Tacchella.

July 19, 2020 Aws Albarghouthi,
Los Angeles, CA (virtually) Guy Katz,
Nina Narodytska

FoMLAS2020

Program Committee

Aws Albarghouthi
Clark Barrett
Chih-Hong Cheng
Arie Gurfinkel
Xiaowei Huang
Suman Jana
Jean-Baptiste Jeannin
Susmit Jha

Guy Katz

Alessio Lomuscio
Nina Narodytska
Luca Pulina
Gagandeep Singh
Armando Tacchella
Aleksandar Zelji¢
Zhen Zhang

Program Committee

University of Wisconsin-Madison
Stanford University

DENSO AUTOMOTIVE Deutschland GmbH
University of Waterloo

University of Liverpool

Columbia University

University of Michigan

SRI International

The Hebrew University of Jerusalem
Imperial College London

VMware Research

University of Sassari

ETH

Universita di Genova

Stanford University

Utah State University

FoMLAS2020 Additional Reviewers

Additional Reviewers

Le, Nham

FoMLAS2020 Author Index

Author Index

Akintunde, Michael 1
Attala, Ziggy 22
Barrett, Clark 102, 124, 180
Boning, Duane 92
Botoeva, Elena 1, 34
Brule, Joshua 148
Cavalcanti, Ana 22
Chen, Hongge 52
Choi, Arthur 67
Darwiche, Adnan 67
Elboher, Yizhak 80
Feldsher, Alexander 102
Fouladi, Sadjad 180
Genin, Daniel 148
Gokulanathan, Sumathi 102
Gopinath, Divya 180
Gottschlich, Justin 80
Goyanka, Anchal 67
Guidotti, Dario 111
Gupta, Aarti 191
Gurfinkel, Arie 191
Hsieh, Cho-Jui 52, 160
Irfan, Ahmed 180
Jacoby, Yuval 124
Julian, Kyle 180
Katz, Guy 80, 102, 124, 180
Kouskoulas, Yanni 148
Kouvaros, Panagiotis 1, 34
Kronqvist, Jan 34
Le, Nham 191
Li, Yang 52
Liu, Xuanqging 160
Lomuscio, Alessio 1, 34

FoMLAS2020

Malca, Adi
Misener, Ruth

Narodytska, Nina
Ozdemir, Alex

Papusha, Ivan
Pasareanu, Corina
Pulina, Luca

Schmidt, Aurora
Shih, Andy
Shinn, Maxwell
Si, Si

Tacchella, Armando

Wang, Lu

Wang, Yihan
Woodcock, James
Wu, Haoze

Wu, Rosa

Yi, Jinfeng

Zelji¢, Aleksandar
Zhang, Hongce
Zhang, Huan
Zhou, Zhi-Hua

102
34

191

180

148
180
111

148
67
191
52

111

160
52
22

180

148

160

180
191

92
160

Author Index

FoMLAS2020 Keyword Index

Keyword Index

Cognitive Neuroscience 191
constraint satisfaction 148
Deep Neural Network 111
deep neural network Verification 124
Deep Neural Networks 102
Dependency Analysis 34
Divide and Conquer 180
ERAN 22
explainable Al 67
Feedforward ReLLU Networks 34
formal methods 80, 148
Formal Verification 1, 22
gradient boosting trees 52
Invariant Generation 124
knowledge compilation 67
Learning-enabled Multi-agent Systems 1
logic 80
Marabou 22, 102
Mixed Integer Linear Programmin 34
nearest neighbor 160
Network Pruning 111
Network Verification 111
Neural Network Verification 180
neural network Verification 124
Neural Networks 1
neural networks 80, 148
NeuralVerification.jl 22
NNV 22
Parallel Computing 180
performance guarantees 148
prime implicants 67
quadratic programming 160

FoMLAS2020

random forest

random forests

Reachability Analysis

recurrent neural network Verification
Recurrent Neural Networks
Reluplex

robustness

Robustness verification

Satisfiability

satisfiability modulo theory
sentential decision diagrams
SHERLOCK

Simplification

SMT

synthesis

verification
Verification

Keyword Index

52
67
191
124
191
22
92
160

180
148
67
22
102
180
80

92, 80
102

FoMLAS2020 Table of Contents

Table of Contents

Formal Verification of Neural Agents in Non-deterministic Environments 1
Michael Akintunde, Elena Botoeva, Panagiotis Kouvaros and Alessio Lomuscio

A Comparison of Neural Network Tools for the Verification of Linear Specifications of
ReLU Networks . . oo e 22
Ziggy Attala, Ana Cavalcanti and James Woodcock

Efficient Verification of ReLU-based Neural Networks via Dependency Analysis........... 34
Elena Botoeva, Panagiotis Kouvaros, Jan Kronquist, Alessio Lomuscio and Ruth
Misener

Robustness Verification for Ensemble Stumps and Trees ..., 52
Hongge Chen, Yihan Wang, Huan Zhang, Cho-Jui Hsieh, Si Si, Yang Li and Duane
Boning

On Symbolically Encoding the Behavior of Random Forests 67
Arthur Choi, Andy Shih, Anchal Goyanka and Adnan Darwiche

An Abstraction-Based Framework for Neural Network Verification........................ 80
Yizhak Elboher, Guy Katz and Justin Gottschlich

Simplifying Neural Networks using Formal Verification 102
Sumathi Gokulanathan, Alexander Feldsher, Adi Malca, Clark Barrett and Guy Katz

NeVer 2.0: Learning, Verification and Repair of Deep Neural Networks 111
Dario Guidotti, Armando Tacchella and Luca Pulina

Verifying Recurrent Neural Networks using Invariant Inference 124
Yuval Jacoby, Clark Barrett and Guy Katz

Incorrect by Construction: Fine Tuning Neural Networks for Guaranteed Performance
on Finite Sets of Examples. 148

Ivan Papusha, Rosa Wu, Joshua Brule, Yanni Kouskoulas, Daniel Genin and Aurora
Schmidt

Robustness Verification of Nearest Neighbor Classifiers.....................o.ooioat. 160
Lu Wang, Xuanging Liu, Jinfeng Yi, Zhi-Hua Zhou and Cho-Jui Hsieh

Parallelization Techniques for Verifying Neural Networks 180
Haoze Wu, Alex Ozdemir, Aleksandar Zelji¢, Kyle Julian, Ahmed Irfan, Divya
Gopinath, Sadjad Fouladi, Guy Katz, Corina Pasareanu and Clark Barrett

Verification of Recurrent Neural Networks for Cognitive Tasks via Reachability Analysis.. 191
Hongce Zhang, Maxwell Shinn, Aarti Gupta, Arie Gurfinkel, Nham Le and Nina
Narodytska

Formal Verification of Neural Agents in
Non-deterministic Environments*

Michael E. Akintunde, Elena Botoeva, Panagiotis Kouvaros, Alessio Lomuscio

Department of Computing, Imperial College London
London, United Kingdom
{michael .akintundel3,e.botoeva,p.kouvaros,a. 10muscio}@imperia1 .ac.uk

Abstract. We introduce a model for agent-environment systems where
the agents are implemented via feed-forward ReLU neural networks and
the environment is non-deterministic. We study the verification prob-
lem of such systems against CTL properties. We show that verifying
these systems against reachability properties is undecidable. We intro-
duce a bounded fragment of CTL, show its usefulness in identifying shal-
low bugs in the system, and prove that the verification problem against
specifications in bounded CTL is in coNExPTIME and PSPACE-hard. We
present a novel parallel algorithm for MILP-based verification of agent-
environment systems, present an implementation, and report the exper-
imental results obtained against a variant of the Vertical CAS use-case.

Keywords: Verification - Neural Systems - Learning-enabled Multi-agent
Systems.

1 Introduction

Forthcoming autonomous and robotic systems, including autonomous vehicles,
are expected to use machine learning (ML) methods for some of their com-
ponents. Differently from more conventional Al systems that are programmed
directly by engineers, components based on ML are synthesised from data and
implemented via neural networks. In an autonomous system these components
could execute functions such as perception [35,26] and control [22,20]. Em-
ploying ML components has considerable attractions in terms of performance
(e.g., image classifiers), and, sometimes, ease of realisation (e.g., non-linear con-
trollers). However, it also raises concerns in terms of overall system safety. Indeed,
it is known that neural networks, as presently used, are susceptible to adversarial
perturbations of known inputs and produce outputs which are difficult to draw
immediate conclusions from [37].

If ML components are to be used in safety-critical systems, including various
forthcoming autonomous systems, it is essential that they are verified and val-
idated before deployment; standard practice for conventional software. In some

* A shorter version of this article appeared in the Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems (AAMAS20).
Auckland, New Zealand. IFAAMAS Press.

2 M. E. Akintunde et al.

areas of Al notably multi-agent systems (MAS), considerable research has al-
ready addressed the automatic verification of AI systems [15,28]. These concern
the validation of either MAS models [25,33], or MAS programs [4,10] against
expressive Al-inspired specifications, such as those expressible in epistemic and
strategy logic. However, with the exceptions discussed below, there is little work
addressing the verification of Al systems synthesised from data and implemented
via neural networks. This paper makes a contribution in this direction.

Specifically, we formalise and analyse a closed-loop system composed of a
reactive neural agent, synthesised from data and implemented by a feed-forward
ReLU-activated neural network (ReLU-FFNN), interacting with a non-deter-
ministic environment. Intuitively, the system follows the usual agent-environment
loop of observations (of the environment by the agent) and actions (by the
agent onto the environment). To model the complexity and partial observabil-
ity of rich environments, we assume that the neural agent is interacting with
a non-deterministic environment, where non-deterministic updates of the envi-
ronment’s state disallow the agent from fully controlling and fully observing the
environment’s state. Under these assumptions, differently from all related work,
the system’s evolution is not linear but branching in the future.

We study the verification problem of these systems against a branching time
temporal logic. As is known, scalability is a concern in verification and is also
an issue in the case of neural systems. To alleviate these difficulties, we are
here concerned with a method that is aimed at finding shallow bugs in the
system execution, i.e., malfunctions that are realised within a few steps from the
system’s initialisation. This kind of analysis has been shown to be of particular
importance in applications, see, e.g., bounded model checking (BMC) [7], as,
experimentally, bugs are often realised after a limited number of steps. Given
this, we focus on a bounded version of CTL, i.e., a language expressing temporal
properties realisable in a limited number of execution steps. This allows us to
reason about applications where the agents ought to bring about a state of affairs
within a finite number of steps, or to verify whether a system remains within
safety bounds within a number of steps. This enables us to retain decidability
even if we consider infinite domains over the reals for the system’s state variables,
whereas the verification problem for plain CTL is undecidable, as we show.
To further alleviate the difficulty of the verification problem, we also introduce
a novel algorithm that checks for the occurrence of bugs in parallel over the
execution paths. As we show, in the case of bounded safety specifications, this
enables us to return a bug to the user as soon as a violation is identified on
any of the branching paths that are explored in parallel. This gives considerable
advantages in applications, as we show in an avionics application.

A key feature of the parallel verification procedure that we introduce lies in
its completeness: we can determine with precision when a potentially infinite set
of states (up to a number of steps from the systems’s initialisation) satisfies a
temporal formula. While this results in a heavier computational cost than some
incomplete approaches, there are obvious benefits in precise verification, notably
the lack of false positives and false negatives. To the best of our knowledge this

Formal Verification of Neural Agents in Non-deterministic Environments 3

is the first sound and complete verification framework for closed-loop neural
systems that accounts for non-deterministic, branching temporal evolutions.

The rest of the paper is organised as follows. After discussing related work, in
Section 2 we formally define systems composed by a neural agent, implemented
by a ReLU-FFNN, interacting with non-deterministic environments. We anal-
yse the resulting models built on branching executions and define a bounded
version of the branching temporal logic CTL to express specifications of these
systems. After defining the verification problem, Section 3 introduces monolithic
and compositional verification algorithms with a complexity study. In this con-
text we show results ranging from undecidability for unbounded reachability,
to coNEXPTIME upper bound for bounded CTL. We present a toolkit for the
practical verification of these systems in Section 4, implementing said procedure,
providing additional functionalities, and reporting the experimental results ob-
tained. We conclude in Section 5.

Related Work. In [2] a closed-loop neural agent-environment system was
put forward and analysed. Like the present contribution the agent was mod-
elled via a ReLU-FFNN. However, differently from here, a simple deterministic
environment was considered. As a consequence, the system executions were lin-
ear and only bounded reachability properties were analysed. [1] extended this
work to neural agents formalised via recurrent ReLLU-activated neural networks
and verified the resulting linear system executions against bounded LTL proper-
ties. In contrast, the model put forward here can account for complex, partially
observable environments resulting in branching traces, and the strictly more ex-
pressive specification language allows for existential and universal quantification
over paths. In addition, while the papers above focus on sequential verification
procedures, we here develop a parallel approach specifically tailored at iden-
tifying shallow bugs efficiently. This requires novel verification algorithms and
mixed-integer linear programming [40] (MILP) encodings.

A number of other proposals have also addressed the issue of closed loop
systems. For example, [21] presents an approach based on hybrid systems to
analyse a control-plant where neural networks are synthesised controllers. Their
approach is incomparable with the one here pursued, since they target sigmoidal
activation functions (while we focus on ReLU activation functions). Also their
verification procedure is not complete, while completeness is a key objective
here. Similarly, [23,41,11, 19] present work addressing closed loop systems with
learned controllers and focus on reachable set estimation and, hence, incomplete
techniques for such systems.

Lastly, there has been recent activity on complete approaches for verifying
standalone ReLU-FFNNs [27,24, 12,32, 6, 38]. The systems considered in these
approaches are not closed-loop and do not incorporate the environment. This
makes the problems considered there different from those analysed here; for
instance no temporal evolution can be considered for neural network-controlled
agents interacting with an environment.

More broadly, this line of work is related to long standing efforts in BMC [3,
34] that are tailored to finding malfunctions easily accessible from the initial

4 M. E. Akintunde et al.

states. While our approach is technically different from BMC, it shares with it
the characteristic of being more efficient than full exploration methods when
only a fraction of the model needs to be explored.

2 Neural agent-environment systems

In this section we introduce systems with a neural agent operating on a non-
deterministic environment (NANES). These are an extension to non-deterministic
environments of the deterministic neural agent-environment systems put forward
in [2].

In contrast to traditional models of agency, where the agent’s behaviour
is given in an agent-based programming language, a NANES accounts for the
recent shift to synthesise the agents’ behaviour from data [22]; we consider agent
protocol functions implemented via feed-forward ReL.U neural networks! (ReLU-
FFNNs) [18]. Differently from [2], following the dynamism and unpredictability
of the environments where autonomous agents are typically deployed [29], a
NANES models interactions of an agent with a partially observable environment.
In this setting an agent cannot observe the full environment state, and therefore
cannot deterministically predict the effect of any of its actions.

We now proceed to a formal description of NANES components: a neural
agent and a non-deterministic environment. To this end, we fix a set S C R™ of
environment states and a set Act C R™ of actions, for m,n € N. We assume that
the agent is stateless and that its protocol (also known as action policy) has al-
ready been synthesised, e.g., via reinforcement learning [36], and is implemented
via a ReLU-FFNN or via a piecewise-linear (PWL) combination of them.

Definition 1 (Neural Agents). Let S be a set of environment states. A neural
agent (or simply an agent) Ag acting on an environment is defined as the tuple
Ag = (Act, prot), where:

o Act is a set of actions;

e prot : S — Act is a protocol function that determines the action the agent will
perform given the current state of the environment. Specifically, given ReL U-
FFNNs Ny, ..., Ny computing functions fn,,..., fn,, h > 1, prot is a PWL
combination of the latter.

When h = 1, prot(s) can be defined, e.g., as fn,(s) for s € S.
The environment is stateful and non-deterministically updates its state in
response to the actions of the agent.

Definition 2 (Non-deterministic Environments). An environment is a tu-
ple E = (S,tg), where:

1 Specifically, we consider fully-connected feed-forward neural networks where hidden
layers are activated by the widely used Rectified Linear Unit (ReLU) activation
function [30], which are known to allow FFNNs to generalise well to unseen inputs,
defined as ReL.U(z) := max(0, z).

Formal Verification of Neural Agents in Non-deterministic Environments 5

e S CR™ is a set of states.
oty : S x Act — 2% is a transition function which determines o finite set of
next possible environment states given its current state and the agent’s action.

Having a finite set of successor environment states allows us to model sys-
tems where agents learn a non-deterministic policy to be used in mission-critical
decision-making scenarios where the effects of each action are roughly equally
optimal in performance, for example, in medical diagnosis systems [14]. Each
successor state must therefore be considered with equal importance.

Given the above we can now define a closed-loop system comprising of an
agent interacting with an environment.

Definition 3 (NANES). A Neural Agent operating on a Non-Deterministic
Environment System (NANES) is a tuple S = (Ag, E, I) where Ag = (Act, prot)
is a neural agent, E = (S,tg) is an environment, and I C S is a set of initial
states for the environment.

Hereafter we assume the environment’s transition function is PWL and its
set of initial states is expressible as a set of linear constraints over integer and
real-valued variables. Note this does not prevent NANES from modelling a wide
class of non-linear environments as these can be approximated to arbitrary pre-
cision [9].

With each NANES S we can associate a model Mg capturing its evolutions
that is used to interpret temporal specifications.

Definition 4 (Model). Given a NANES system S = (Ag, E,I), its associated
temporal model Mg is a pair (R,T) where R is the set of environment states
reachable from I via T, I C R C S, and T C R X R is the successor relation
defined by (s,s") € T iff s € tg(s, prot(s)).

In the rest of the paper, we assume to have fixed a NANES S and the
associated model Mg. An Mg-path, or simply path, is an infinite sequence of
states s152... where s; € R and s;41 is a successor of s;, i.e. (s;,8;41) € T, for
each ¢ > 1. Given a path p we use p(i) to denote the i-th state in p. For an
environment state s = (ay,...,an), we write paths(s) to denote the set of all
paths originating from s and we use s.d to denote its d-th component ag.

We verify NANES against properties expressed in a bounded variant of
the temporal logic CTL [8]. Inspired by Real-Time Computation Tree Logic
(RTCTL) [13], formulae of bounded CTL build upon temporal modalities in-
dexed with natural numbers denoting the temporal depth up to which the for-
mula is evaluated.

Definition 5 (Bounded CTL). Given a set of environment states S C R™,
the bounded CTL specification language over linear inequalities, bCTLg<, is
defined by the following BNF:

pu=alpVelpAp| EXFp| AXFp,

az=ci(dy)+ - +ea(d)opec,
where op € {<,>}, d; € {1,...,m}, ¢i,c €R, and k € N.

6 M. E. Akintunde et al.

Here atomic propositions « are linear constraints on the components of a
state. For instance, the atomic proposition (d;) + (d2) < 2 states that “the
sum of the di-st and ds-nd components is less than 2.” The temporal formula
EX*¢ stands for “there is a path such that ¢ holds after k time steps”, whereas
AX"p stands for “in all paths ¢ holds after k time steps”. Moreover, bounded
until E(eU¥%) (“there is a path such that 1 holds within k time steps, and
where ¢ holds up until then”) can be defined by the abbreviations E(pU'4)) £
YV (o AN EX™), and E(pUR) 2 4V (p A EX'E(pUF 1)) for k > 1, and
analogously with A(@U¥1).

Although bCTLg< does not include any form of negation, it still allows us
to express arbitrary CTL formulae of bounded temporal depth since it supports
all Boolean and temporal operators with their duals. Note also that although
bCTLgR< does not support non-strict inequalities, one can in practice remedy this
at the expense of completeness through the use of slack variables [40] to create
an approximation of a theoretically closed feasble set, which is common practice
when modelled using MILP. Consider for instance an atomic proposition of the
form e > c. It can be replaced with the constraints e > ¢ — ¢ and € > 0, where ¢
is a small slack variable.

We now define the logic CTL built from the atoms of bCTLg<.

Definition 6 (CTL). The branching-time logic CTLg< is defined by the fol-
lowing BNF:

pu=a|-p|pVe|AXe | AFp | E(eUy),

where « is an atomic proposition in bCTLr<.

Comparing bCTLg< to CTLg<, on the one hand AXF¥y is expressible as
AX(---(AXy)---) and EX*yp is expressible as “AX(--- (AX—y)---), where
AX is applied k£ times. On the other hand, CTLg< includes the AF (“in all
paths eventually”) and EU (unbounded until) modalities capable of express-
ing arbitrary reachability, whereas bCTLr< admits bounded specifications only.
Note that, while bCTLg< is clearly less expressive than CTLg<, it still cap-
tures properties of interest. Notably, bounded safety is expressible in bCTLg< as
AGFsafe & AX'safe A --- AN AXFsafe stating that every state on every path is
safe within the first &k steps.

We interpret bCTLr< formulae on a temporal model as follows.

Definition 7 (Satisfaction).

For a model Mg, an environment state s, and a bCTLgr< formula v, the
satisfaction of ¢ at s in Mg, denoted (Ms, s) = ¢, or simply s = ¢ when Mg
is clear from the context, is inductively defined as follows:

sEcal(d)+ -+ ald)opciff (Zézl ci - s.d;)opc;

sEEVY iff s =@ orsi=y;
sEPAY iff s =@ and s = 1;
sk EXkp iff there is p € paths(s) such that p(k) = ¢;

s AXFp iff for all p € paths(s) we have p(k) = .

Formal Verification of Neural Agents in Non-deterministic Environments 7

We assume the usual definition of satisfaction for CTLg<; this can be given as
standard by using the atomic case from Definition 7.

A specification ¢ is said to be satisfied by S if (Mg, s) = ¢ for all initial
states s € I. We denote this by S = ¢. It follows that, for example, to check
bounded safety we need to verify that from all (possibly infinitely many) initial
states no state (out of possibly infinitely many) within the first & evolutions is an
unsafe state. This is the basis of the verification problem that we define below.

Definition 8 (Verification problem). Given a NANES S and a formula ¢,
determine whether S = .

In the next section we study the decidability and complexity of the verifica-
tion problem here introduced.

3 The Verification Problem

In this section we study the verification problem for a NANES against CTL
and bCTLg< specifications. First, we show that verifying against CTL formulae
is undecidable, already for deterministic environments and simple reachability
properties. In the rest of the section, we focus on bounded CTL, where we
develop a decision procedure for the verification problem based on producing a
single MILP and checking its feasibility. Then we devise a parallelisable version
of the procedure that produces multiple MILPs and that can be particularly
efficient at finding counter-examples for bounded safety properties. Following
this, we analyse the computational complexity of the verification problem against
bCTLgr< formulae.

3.1 Unbounded CTL

In this subsection we show undecidability of the verification problem for deter-
ministic NANES against simple reachability properties, where a deterministic
NANES is a tuple (Ag = (Act, prot), E = (S,tg), I), where |[tg(s,a)| =1 for all
s € S and a € Act. The undecidability result for arbitrary NANES and full CTL
follows.

Theorem 1. Verifying deterministic NANES against formulae of the form AF«
is undecidable.

Proof (Proof Sketch). We can show the result by reduction from the Halting
problem of a deterministic Turing machine (DTM) M on an input string wp,
whose tape alphabet consists of symbols 0, 1 and 2, with one halting state (the
accepting state).

The idea of the reduction is to construct a NANES § = (Ag, E, I) such that
each state of S encodes the current configuration of the DTM, i.e., the current
state of M, the symbol under the head, and the contents of the tape to the left
and right of the head as two real numbers (the former one is read from right to

8 M. E. Akintunde et al.

left). I consists of a single state and encodes gg (the initial state of M) and wy.
The run of M on its input can be simulated by appropriately updating the state
using the environment transition function (while the agent does not need to do
anything). Conversely, it is possible to shift all the logic to the agent’s protocol
function with a trivial environment.

Finally, we verify S against the reachability specification ¢ of the form
AF accept, where accept encodes that M is in the accepting state. Then S = ¢ iff
M halts on wp. It can also be checked that the required environment transition
function and the agent’s protocol function can be implemented as piecewise-
linear functions.

We observe that the above result holds even for strongly restricted NANES
where either the protocol or the transition function is linear (but not both at the
same time). As a corollary, we obtain undecidability of the verification problem
against full CTL.

Corollary 1. Verifying NANES against CTLg< formulae is undecidable.

3.2 Bounded CTL

We now proceed to investigate the verification problem for the bounded CTL
specification language. We start by showing an auxiliary result that allows us to
assume without loss of generality that the cardinality of tg(s,a) is the same for
each state s and action a.

Lemma 1. Given a NANES S = ((Act, prot), (S,tg),I) and specification ¢ €
bCTLg<, there is:

— a NANES S’ = ((Act, prot’), (S',t),I') such that [tz (s1,a1)| = [tz (s2, a2)]|
for all s1,82 € S" and a1, az € Act,
— a specification ¢’ € bCTLr< such that S = ¢ iff S’ = ¢'.

Proof (Proof Sketch). Consider b = maxseg qeact |tE(s,a)|. Define the compo-
nents of &’ such that [t;(s,a)| =bforalls € §',a € Act,and S E ¢ iff S’ = ¢'.
S" and I' are defined by S’ = S x {0,1} and I’ = I x {1}. The added dimension
indicates whether a state is valid (1) or not (0). The agent’s protocol function
prot’ is defined as prot’((s, f)) = prot(s) for each s € S, f € {0,1}. The tran-
sition function ¢ ((s, f), a) returns tg(s,a) x {1} U{(s1,0),..., (sp—1,0)} where
[tg(s,a)] =1 and sy,...,sp—; are pairwise distinct states from S. The formula ¢’
is a copy of ¢ with atomic propositions « replaced with a A ((m + 1) > 0.9),
where S = R™.

In the rest of this section we assume that |tg(s,a)| = b for all s and a, and
that ¢g is given as b piecewise-linear (PWL) functions ¢; : R™+" — R™. We
remark that b represents the maximum branching factor of the environment,
and does not constrain each state-action pair to exactly b successor states. Note
that this assumption is used when devising the verification procedure presented
below.

Formal Verification of Neural Agents in Non-deterministic Environments 9

The procedure that we put forward recasts the verification problem to MILP.
It is well known that a PWL function can be MILP-encoded using the “Big-M”
method [16]. For instance, the pairs (x,y), where y = ReLU(x) and = € [I, u]
can be found as solutions to the following set of MILP constraints that use the
binary variable §, real-valued variables = and y and constants [and w:

Here, when § = 1, the constraints imply that y = z and > 0, and when ¢ = 0,
the constraints imply that y = 0 and « < 0. Since the function computed by
a ReLU-activated neural network can be obtained via successive compositions
of the ReLLU function and linear transformations, its MILP encoding can be
obtained via the composition of constraints of the above form with appropriate
linear constraints. The resulting overall MILP is of linear size in the size of the
network. Further details of the Big-M encoding of the ReLU function can be
found in [38, 27].

Given a MILP program 7, we use vars(m) to denote the set of variables in 7.
Denote by a the assignment function a : vars(m) — R, which defines the specific
(binary, integer or real) value assigned to a MILP program variable. We write
a = 7 if a satisfies m, i.e., if a(d) € {0,1} for each binary variable §, a(:) € N
for each integer variable ¢, and all constraints in 7 are satisfied. Hereafter, we
will denote by boldface font tuples of MILP variables (of length m for S C R™
the set of environment states) representing an environment state and call them
state variables.

Monolithic Encoding. We now give a recursive encoding of the verification
problem into a single MILP. As a stepping stone, we first encode the computation
of a successor environment state as a composition of the protocol function prot
and of the transition functions t;. By assumption, prot and each t; is a PWL
function, and so the predicate y = t;(x, prot(x)) is expressible as a set of MILP
constraints by means of the Big-M method, which we denote by C;(x,y) (note
that £ Uy C vars(C;i(z,y))). Solutions of C;(x, y) represent pairs of consecutive
environment states [2]:

Lemma 2. Let C;i(x,y) be a MILP program corresponding to y = t;(x, prot(x)).
Given two states s and s’ in Mg, we have that s’ = t;(s, prot(s)) iff there is an
assignment a to vars(Ci(z,y)) such that s = a(x), s’ = a(y), and a = Ci(x,y).

Denote by bCTLg< the bounded CTL language over atomic propositions «
where op € {<,>} (i.e., linear constraints over non-strict inequalities). As a
second step, given a NANES S and a formula ¢ € bCTLgr<, we construct a
MILP program 7s,,, whose feasibility corresponds to the existence of a state
in Mg that satisfies ¢. For ease of presentation, and without loss of generality,
we assume that ¢ may contain only the temporal modalities EX! and AX!,

10 M. E. Akintunde et al.

{Ca(2)},

where Co(x) is defined as cizq, + -+ + cwzq, opc for
a = c(d)+- - +a(ld)opcand @ = (z1,...,Tm),
TS,o1vee (@) = (0=1)= (154, (x1) U{x =21}) U
(6 =0) = (7s,p; (x2) U{Z = 22}),

Ws,a(m)

where the binary variables d,61,...,d, the state variables
T1, T2, Yq,---,Yp, Y, and all auxiliary variables in C;(x,y;)
are fresh,

= 78,01 (T) UTs,0,(x),
U 6= 1) = (Ci(a,
= Ci(z,y) U UG (e,

TS, 01N\ p2 (IE)
7s,Bxo(T)
Ts,4Xe(T)

y) U{y =y) U{di+ -+ =1} Umy(y),
Yp) U 7s,0(y) U - UTs o(yy).
Fig. 1. Monolithic encoding 7s,, for ¢ € bCTLg<.

for which we write EX and AX, respectively?. We make use of the indicator
constraints of the form (6 = v) = ¢, for a binary variable J, binary value
v € {0,1} and a linear constraint ¢, meaning that whenever the value of § is v,
the constraint ¢ should hold. In particular, indicator constraints can be used to
naturally express disjunctive cases. For instance, the disjunction xt =3V =5
can be encoded using two auxiliary binary variables ¢;, ¢ € {1,2}, and the
following set of MILP constraints:

(51:1):>ZL':3,(52:1):>1’:5,51+52:1

Here, the constraint d; +92 = 1 ensures that at least one of the two clauses is sat-
isfied (note that, in general, the above encoding does not rule out an assignment
where both clauses are satisfied at the same time). Given a binary variable ¢
and a set of constraints m, we hereafter abbreviate {(6 = v) = ¢ | ¢ € 7} to
(0 =v)=m.

We now define the monolithic encoding 7s .

Definition 9. Given a NANES S and a formula ¢ € bCTLg<, their monolithic
MILP encoding 7s,, is defined as the MILP program 7s ,(x), where T is a
tuple of fresh state variables, and s () is built inductively using the rules in
Figure 1.

In the encoding in Figure 1, the base case ms () for an atom a produces
the MILP program consisting of a single linear constraint corresponding to «
and using variables in . Each inductive case depends on the state variables x
but might in turn generate programs for subformulas which depend on freshly
created state variables different to @ (such as xi, T, y, etc). All other auxil-
iary variables employed in the encoding are also fresh, preventing undesirable
interactions between unrelated branches of the program.

2 For Q € {A, E}, the formula QX" is equivalent to QX'(--- (QX'p)---) where
QX" is applied k times to ¢ and which grows linearly in k assuming unary encoding
of numbers.

Formal Verification of Neural Agents in Non-deterministic Environments 11

e Disjunctions use a binary variable § and two sets of indicator constraints. In
a feasible assignment a, when § is 1, ¢, is satisfied and the variables x take
the values of the variables @1, while when § is 0, @9 is satisfied and x takes
the values of x5.

e We encode conjunction as the union of the constraints for each of the con-
juncts, which all must be satisfied at the same time.

e We encode EX via b-ary disjunction: there are b possible next states and
each disjunct chooses one of them by ensuring that the relevant C;(x,y;) is
satisfied. The variables for the successor state y are assigned accordingly to
this choice; moreover, the subprogram for ¢ depends on them. Notably, only
one copy of ms , is required.

e To satisfy AXy, all b possible successor states should satisfy ¢, and so we
take the union of all Cj(x,y,) and of b copies of 7s ,, each depending on one
of the successor state variables y;.

Note that the size of 7s , may grow exponentially due to b repetitions of 7s 4 in

s, axy(2); for ¢ = AXFa, the size of 1s,, is O(k - b¥ - |S|). The same estimate

works in the general case for the temporal bound & of . On the other hand, when

¢ contains no AX operator, the size of 75, remains polynomial O(k - b - |S]).
We can prove that 75, is as intended.

Lemma 3. Given a NANES S, a formula ¢ € bCTLgr< and a state s in Mg,
the following are equivalent:

1. sk .
2. There exists an assignment a to vars(ws ,(x)) such that a = 7s () and

s=a(x).

Finally, we can exploit Lemma 3 to devise a procedure that solves the verifi-
cation problem by restricting @ to the initial states of S. The procedure is given
by Algorithm 1. Its soundness and completeness is shown by the following.

Theorem 2. Given a NANES S and a formula ¢ € bCTLg<, Algorithm 1
returns False iff S = .

Proof. Suppose that Algorithm 1 returns False. It follows that ms oy, (@) is
feasible. So, by Lemma 3, there exists an assignment a to vars(ms -y, (T))
such that a |= 75 ~onp, (). Moreover, for s = a(x), we have that s = ¢; and
s = —p. Tt follows that s € I and s & ¢, and consequently, S & ¢. Conversely,
if there exists s € I such that s & ¢, we obtain that there is an assignment
satisfying ms —onep, (€), and therefore Algorithm 1 returns False.

Recall that strict inequalities are not supported in the MILP solver. Therefore
note that we only pass —p (the negation of the specification), and the initial state
o (expressed only in terms of non-strict intequalities) to the MILP solver in
negation normal form (NNF). In this process, negation is eliminated by pushing
it down and through the atoms resulting in all strict inequalities of atoms of the
original specification ¢ being converted to non-strict inequalities.

12 M. E. Akintunde et al.

Algorithm 1 The monolithic MILP verification procedure.

1: procedure MONO-VERIFY(S, @)

2: Input: NANES S = (Ag, E, I); formula ¢ € bCTLg<
Output: True/False

@1 < Boolean formula representing

@'+ NNF(=¢ A 1)

75,/ < MILP associated with S and ¢’

feasible <~ MILP_SOLVER(7s /)

return —feasible

Compositional Encoding. Observe that due to its handling of disjunctions,
the previously introduced encoding 7s,, might result in excessively large pro-
grams whose feasibility is a computationally expensive task. We now propose
a different encoding that instead of delegating disjunction to the MILP solver
(the 1 Vo and EX @ cases) creates a separate program for each disjunct. More
specifically, for a formula ¢, we define a set Ils,, of MILP programs with the
property that there exists a state s in Mg such that s = ¢ iff at least one
of the programs in Ils , is feasible. A specific feature of this encoding lies in
its parallelisability. Due to this, it is particularly amenable to efficiently finding
bugs that can be reached within a few steps along some of the paths from the
initial states, similarly to BMC [7]. We demonstrate this experimentally in the
next section after having introduced the encoding here.

Below, given a set C of linear constraints, we write [C] to denote the respec-
tive MILP program. Given sets A = {[41],...,[4,]} and B = {[Bi],...,[B4l}
of MILP programs, we write A x B to denote the product of A and B computed
as {[Az U Bj] | 1= 17 Py] = 1, ,q}

Definition 10. Given a NANES S and a formula ¢ € bCTLgr<, their compo-
sitional MILP encoding I1s ., is defined as the set of MILP programs Ils ,(x),
where x is a tuple of fresh state variables, and IIs ,(x) is built inductively using
the rules in Figure 2.

1Is.0(x) {[Ca(=)]},
s pives (®) = s (x) Ulls,p, (),
(:B) = Ils, (:I:) X 15,4, (:c),
) Uiy {[Ci(@,)]} x TTs,4(y),

where the state variables y and all re-
maining variables in C;(x, y) are fresh,

HS,¢1A<P2
s pxe(x

b
s axe(®) = X,_ A{lCi(x,y,)]} x s, (y,),
where the state variables y,,...,y,
and all remaining variables in C;(x, y;)
are fresh.

Fig. 2. Compositional encoding IIs,, for ¢ € bCTLy<.

Formal Verification of Neural Agents in Non-deterministic Environments 13

Algorithm 2 The compositional MILP verification procedure.

1: procedure COMP-VERIFY(S, @)
2: Input: NANES S = (Ag, E, I); formula ¢ € bCTLg<

3: Output: True/False

4: feasible < False

5: @1 < Boolean formula representing [
6: @+ NNF(=p A ¢r)

7 IIs . < Set of MILPs associated with S and ¢’
8: for 7 in Ils , do

9: auz < MILP_SOLVER(7)

10: if auz is True then

11: feasible <— True

12: break

13: return —feasible

Following the monolithic encoding in Figure 1, in Figure 2 C, () is the linear
constraint corresponding to the atomic proposition « defined over . We use the
same convention regarding the state and auxiliary variables of subprograms. In
15 , every program 7 represents one of the encodings of .

e For disjunction we take the union of the two sets of encodings.

e Every encoding of 1 A @2 consists of an encoding of 1 and of an encoding
of 9, therefore we take the product of the two sets.

e Every encoding of FX¢ is an encoding of ¢ extended with the constraints
Ci(z,y) for a single 1.

e Every encoding of AX ¢y consists of b (possibly different) encodings of ¢ ex-
tended with the constraints C;(x,y,) for i =1,...,b.

The set Ils , grows exponentially with the temporal depth of ¢; however each
program in the set can be smaller than the monolithic MILP 7s .
Similarly to Lemma 3 we can prove that Ils , is as intended.

Lemma 4. Given a NANES S, a formula ¢ € bCTLr< and a state s in Mg,
the following are equivalent:

1. s .
2. There is a MILP w(x) € IIs ,(x) and an assignment a to vars(m(x)) such

that s = a(x) and a = w(x).

Based on Lemma 4, we can devise a verification procedure that searches for
a feasible MILP in the set of MILPs generated by the encoding of Figure 2. This
procedure is presented in Algorithm 2. Importantly, it naturally lends itself to
parallelisation when checking feasibility of the generated programs. In turn this
enables us to check in parallel for a possible falsification of formulas in which the
temporal operator is universally quantified as in AX*a. As we will see in the
next section, this will become particularly useful when verifying bounded safety.

Computational Complexity. Finally we study the complexity of the veri-
fication problem for bCTLg<. The upper bound follows from the monolithic

14 M. E. Akintunde et al.

verification procedure and the lower bound can be obtained by reduction from
the validity problem of QBF.

Theorem 3. Verifying NANES against bCTLr< is in coNEXPTIME and is
PSPACE-hard in combined complexity.

We also show that the complexity of the verification problem is reduced to
coNP for the bounded safety fragment of bCTLg<.

Corollary 2. Verifying NANES against bounded safety properties is coNP-comp
lete in combined complexity.

Proof (Proof Sketch). The upper bound follows from the fact that we can check
whether a property ¢ = AG¥safe is not satisfied by S by guessing an initial state
s and a path p of length k originating from s, and by verifying that p(i) ¥ safe for
some ¢ = 1,..., k. If such an initial state s exists, then there exists an initial state
s’ with the same properties of polynomial size. This follows from the encoding
into MILP and the fact that if a MILP instance is feasible, there is a solution of
polynomial size. The lower bound can be adapted from the NP lower bound of
the satisfiability problem of neural networks properties [24], and holds already
for one-step formulae.

4 Implementation and Experiments

We have implemented the verification procedures described in the previous sec-
tion in an open source toolkit called NANESVERIFY [31]. The tool takes as input
a bCTLg< specification ¢ and a NANES § in the form of ReLU-FFNNs imple-
menting the agent, piecewise linear (PWL) functions (possibly given as ReLU-
FFNNs) implementing the environment and a set I of the initial states in the
form of a hyper-rectangle which can be encoded as x1 > 1 Az < Ui A+ AZy, >
Im A Ty < Uy, for hyper-rectangle [ly,u1] X -+ X [, u,] and state variables
x = (x1,...,2Zm). The top-level call to the tool returns True if ¢ is satisfied on
S, and returns False if ¢ fails for some initial state of S. In the latter case, a
trace in the form of state-action pairs is produced, giving an example run of the
system which failed to satisfy the specification.

The user can specify a parameter to determine whether the monolithic or
compositional procedure with parallel or sequential execution is to be used.
When using sequential execution, NANESVERIFY follows the respective pro-
cedures from Algorithms 1 and 2. For the compositional procedure with parallel
execution, NANESVERIFY performs the computation in line 9 of Algorithm 2
asynchronously across eight worker processes running a separate Gurobi instance
for each MILP. The main process finishes either when a MILP-solving job termi-
nates with a feasible solution (finding a counter-example), all jobs gave infeasible
results, or no result was returned within a given time limit.

We used Python to implement the tool and relied on Gurobi ver. 8.1 [17]
as a back-end to resolve the feasibility of the generated MILP problems. When

Formal Verification of Neural Agents in Non-deterministic Environments 15

constructing the Big-M encodings of the neural networks, the lower and upper
bounds for each neuron are determined using symbolic linear relaxation [39]
starting from the bounds of the input nodes given by I. For other MILP variables
encountered, we propagate their bounds throughout the encoding using interval
arithmetic. For the compositional encoding, we delegate disjunctions at the level
of atomic propositions to the MILP solver, which avoids the unnecessary blow-
up of the number of MILPs generated and can still be efficiently handled by the
solver.

Aircraft Collision Avoidance System Example. To validate the toolkit we
use a scenario involving two aircraft, the ownship and the intruder, where the
ownship is equipped with a collision avoidance system referred to as Vertical-
CAS [23]. The intruder is assumed to follow a constant horizontal trajectory.
Vertical CAS once every second issues vertical climbrate advisories to the own-
ship pilot, to avoid a near mid-air collision (NMAC), a region where the ownship
and intruder are separated by less than 100ft vertically and 500ft horizontally.
The possible advisories are:

1) COC: Clear Of Conflict.

2) DNC: Do Not Climb.

3) DND: Do Not Descend.

4) DES1500: Descend at least 1500 ft/s.

5) CL1500: Climb at least 1500 ft/s.

6) SDES1500: Strengthen Descent to at least 1500 ft/s.
7) SCL1500: Strengthen Climb to at least 1500 ft/s.

8) SDES2500: Strengthen Descent to at least 2500 ft/s.
9) SCL2500: Strengthen Climb to at least 2500 ft/s.

The advisories instruct the pilot to accelerate until the vertical climbrate of the
ownship complies with the advisory. For some advisories, e.g. DND, the pilot
can choose any acceleration in [g/4, g/3], where g represents the gravitational
constant 32.2 ft/s*. We hereafter denote by [m] the set {1,..,m}. The set of
tuples S = (h, hg, T,adv) € [—3000,3000] x [—2500, 2500] x [0,40] x [9] describe
an ownship—intruder encounter, where:

1) h (ft): Intruder altitude relative to ownship.

2) hg (ft/s): Ownship vertical climbrate.

3) 7 (s): Time to loss of horizontal separation.

4) adv: The previous advisory issued by Vertical CAS.

The vertical geometry of the encounter is given by h and hg, and 7 reports the
seconds until the ownship (black) and intruder (red) are no longer horizontally
separated, illustrated in Fig. 3. The Vertical CAS system is composed of nine
ReLU-FFNNs F = {(fn, : R®* = R%) : i € [9]}, one for each advisory, with three
inputs (h, ho,7), five fully-connected hidden layers of 20 units each, and nine
outputs representing the score of each possible advisory.

NANES Encoding. We model Vertical CAS as a neural agent with protocol
function prot(s) = arg max(apply(select(s), s)) on input state s = (h, ho, 7, adv) €
S, producing an action a € Act = [9] corresponding to the highest-scoring advi-
sory, where:

16 M. E. Akintunde et al.

NMAC zone

Fig. 3. Vertical CAS encounter geometry

\ Comp-PAR CoMP-SEQ MONOLITHIC
k|—19.5 —22.5 —25.5 —28.5|—19.5 —22.5 —25.5 —28.5|—19.5 —22.5 —25.5 —28.5
110.629 0.608 0.649 0.652|0.728 0.819 0.737 0.750|0.039 0.039 0.041 0.042
212.901 2.730 1.092 1.4295.392 5.594 0.623 0.618 |4.399 6.450 1.444 3.323
3110.67 1.716 1.918 1.824|26.06 0.986 0.961 0.964 |23.33 14.58 12.79 13.59
4139.58 40.91 2.474 2.570(109.9 108.7 1.404 1.417 - - 377.5 29.96
5/145.6 156.3 159.8 3.830(433.5 481.2 512.4 2.244 - - — 751.1
6(797.4 544.8 573.5 568.8| 2174 1639 1826 1859 — — — —

Table 1. Verification times for a Vertical CAS system against the property ©* for
different values of k and ho. Greyed-out cells indicate a False result, otherwise a True
result. We use dashes ‘-’ to indicate a two hour timeout.

e select: S — F selects the neural network corresponding to the previous advi-
sory adv, defined select(s) = fadv,

e apply: F x R* — RY computes the output of a neural network given a state,
defined as apply(f, s) = f(h, ho,7),

e argmax: RY — [9] returns the index of the score with highest value from a
neural network’s output.

Since each of the above functions and the ReLU-FFNNs are PWL, the compo-
sition prot is also PWL.

‘We model the ownship pilot’s non-deterministic behaviour in the environment
of §. Thus, the environment transition function tg “chooses” an acceleration
and determines the next state of the environment through the state transition
dynamics. As described in [23], the acceleration chosen by the pilot is assumed
to be from a continuous interval, but we bound the number of possible successor
states of tg, by discretising the set of possible accelerations into b equally spaced
cells. Here we choose b = 3. Take for example advisory DND; the set of next
possible accelerations are {g/4,7¢/24,¢9/3}.

Assume a boolean predicate compliant: S x Act — B which returns True
iff the current vertical climbrate of the ownship is compliant with the advisory
issued by the agent. Non-zero accelerations are chosen only if compliant does not
hold, otherwise the pilot maintains a constant climbrate, i.e., B(()Z) =0 for i € [b].
Given the current state s € S, the issued advisory adv’ = prot(s), and the set

of b accelerations {h((f) : i € [b]} corresponding to the advisory adv’, we define

Formal Verification of Neural Agents in Non-deterministic Environments 17

each of the transition functions tq,...,t, for tg as:
h h— ho At — 0.5k Ar?
ti ho 7adv’ = ho + h((JZ) At ,
T T— AT
adv adv’

where AT =1 and i € [b].
Experimental Results. We tested NANESVERIFY on the following safety
specification:

o = AX* ((1) > 100 Vv (1) < —100)
for various values of k. The formula * is satisfied if from every initial state in
1, all possible evolutions of the system remain safe after k time steps, i.e., there
does not exist a state in I which, after k time steps, can lead to the ownship
entering the unsafe region (|h| < 100), which may potentially lead to an NMAC
for small values of 7 (recall that in bCTLg<, the term (1) represents the first
component of the state s and so refers to s.1 = h). We consider the verification
problem with the set of initial states

I=[-133,—-129] x {—19.5,—22.5,—25.5,—28.5} x {25} x {COC}.

This is a potentially risky encounter with the intruder initially below the own-
ship, but with the ownship descending towards the intruder.

All results were obtained on a machine with an Intel Core i7-6700 3.40GHz
CPU with 16GB of RAM, running a 64-bit version of Ubuntu 16.04. The re-
sults for the monolithic procedure are denoted MONOLITHIC, and the results for
the compositional procedure with parallel and sequential execution are denoted
CoMP-PAR and COMP-SEQ, respectively. In Table 1, we report the performance
of the tool in terms of the amount of time (in seconds) to resolve the specification
©F for k € {1,...,6} with initial climbrates hy € {—19.5, —22.5, —25.5, —28.5}
for each of the execution modes. For all cases we use a fixed timeout of two
hours. We empirically observe a linear relationship between k& and the size of
each MILP program.

In Table 1 we see a climbrate of —28.5 ft/s resulting in a period where the
ownship enters the unsafe region for four time steps. For smaller descent rates,
the time spent in the unsafe region decreases, until for ho = —19.5 where the
ownship remains safe for the entire period. Upon analysing the trace produced by
NANESVERIFY for (hg, k) = (—22.5,3), the agent produces advisory CL1500 at
each time step, causing the pilot to accelerate at g/4 ft/s? in an attempt to climb
to avoid colliding with the intruder. The descent rate was not reduced quickly
enough to avoid the unsafe state (h, ho, 7, adv) = (—97.719, 1.65, 22, CL1500)
being reached by the third timestep.

Overall, COMP-PAR is the most performant method for resolving the spec-
ification *. We observe that 3¥ MILPs are generated for each k when using a
compositional encoding; it becomes increasingly necessary to spread the compu-
tational load across the available worker processes especially when checking for
infeasibility. The speed-up is most noticeable for hg = —19.5.

18 M. E. Akintunde et al.

We expect that CoMP-PAR is in general more performant when checking for
feasibility. For CoMP-SEQ, we observed that the first MILP checked in the for-
loop of Algorithm 2 was feasible, causing the loop to return early, giving quicker
feasibility checks compared to CoMP-PAR. We observe that MONOLITHIC is over-
all the least performant encoding, with several cases of timeouts when checking
for infeasibility of the generated MILPs for k£ > 4. Although for Vertical CAS,
the unsafe region was entered and eventually escaped, the performance of our
compositional procedure exemplifies the tractability of finding shallow bugs in a
faulty system.

We are unable to present a comparison with other tools because, as far as we
are aware, no other tool supports branching models and CTL specifications as
we do here, although the neural network encoding can be interchanged with any
state-of-the-art MILP-based approach, e.g. [5]. We use double-precision floating
point numbers for representing real values. For the MILP solver that we use for
our back-end, Gurobi, we use the default tolerance level of 1076, which represents
the amount of numerical error allowed on a constraint while still considering it
“satisfied”. We rely on Gurobi for dealing with any further numerical issues. Note
also that our encoding is more efficient than [2], which does not use symbolic
linear relaxation for their neural network encoding nor interval arithmetic-based
bounds propagation for MILP variables.

5 Conclusions

As we argued in Section 1, forthcoming autonomous systems will make greater
use of machine learning methods; therefore there is an urgent need to develop
techniques aimed at providing guarantees on the resulting behaviour of such
systems. While the benefits of formal methods have long been recognised, and
they have found large adoption in safety-critical systems as well as in industrial-
scale software, there have been few efforts to introduce verification techniques
for systems driven by neural networks.

In this paper we defined a system composed of a neural agent driven by
deep feed-forward neural networks interacting with a non-deterministic envi-
ronment. The resulting system displays branching evolutions. We defined and
studied the resulting verification problem. While the problem is undecidable for
full reachability, we isolated a fragment of the temporal language and showed
that its corresponding verification problem is in coNEXPTIME. We developed
and reported on a toolkit which includes a novel parallel algorithm to verify
temporal properties of the complex environment defined in the Vertical CAS sce-
nario. As demonstrated, while the parallel algorithm remains complete, it offers
considerable advantages over its sequential counterpart when searching for coun-
terexamples to bounded safety specifications in concrete examples.

In future work we plan to extend the framework to multiple agents operating
in an environment.

6

Formal Verification of Neural Agents in Non-deterministic Environments 19

Acknowledgements

This work is partly funded by DARPA under the Assured Autonomy programme
(FA8750-18-C-0095). Alessio Lomuscio is supported by a Royal Academy of En-
gineering Chair in Emerging Technologies.

References

10.

11.

12.

13.

14.

. Akintunde, M.E., Kevorchian, A., Lomuscio, A., Pirovano, E.: Verification of RNN-

based neural agent-environment systems. In: Proceedings of the 33rd AAAI Con-
ference on Artificial Intelligence (AAAI19). pp. 6006-6013. AAAT Press (2019)
Akintunde, M.E., Lomuscio, A., Maganti, L., Pirovano, E.: Reachability analysis
for neural agent-environment systems. In: Proceedings of the 16th International
Conference on Principles of Knowledge Representation and Reasoning (KR18).
pp. 184-193. AAAI Press (2018)

Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 117-148 (2003)

Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. Autonomous Agents and Multi-Agent Systems 12(2),
239-256 (2006)

Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient ver-
ification of neural networks via dependency analysis. In: Proceedings of the 34th
AAAT Conference on Artificial Intelligence (AAAI20). AAAT Press (2020)

Bunel, R.R., Turkaslan, I., Torr, P., Kohli, P., Mudigonda, P.K.: A unified view
of piecewise linear neural network verification. In: Proceedings of the 31st Annual
Conference on Neural Information Processing Systems (NeurIPS18), pp. 4790-
4799. Curran Associates, Inc. (2018)

Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Formal Methods in System Design 19(1), 7-34 (2001)

Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge, Massachusetts (1999)

D’Ambrosio, C., Lodi, A., Martello, S.: Piecewise linear approximation of functions
of two variables in milp models. Operations Research Letters 38(1), 39-46 (2010)
Doan, T.T., Yao, Y., Alechina, N., Logan, B.: Verifying heterogeneous multi-agent
programs. In: Proceedings of the 13th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS14). pp. 149-156 (2014)

Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation and Con-
trol (HSCC19). pp. 157-168. ACM (2019)

Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: Proceedings of the 15th International Symposium on Automated Technology
for Verification and Analysis (ATVA17). Lecture Notes in Computer Science, vol.
10482, pp. 269-286. Springer (2017)

Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J.: Quantitative temporal rea-
soning. Real-Time Systems 4(4), 331-352 (1992)

Fard, M.M., Pineau, J.: Mdps with non-deterministic policies. In: Proceedings of
the 22nd Conference on Neural Information Processing Systems (NIPS09). pp.
1065-1072. Curran Associates, Inc. (2009)

20

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

M. E. Akintunde et al.

Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge.
In: Proceedings of 16th International Conference on Computer Aided Verification
(CAV04). Lecture Notes in Computer Science, vol. 3114, pp. 479-483. Springer
(2004)

Griva, 1., Nash, S., Sofer, A.: Linear and nonlinear optimization, vol. 108. Siam
(2009)

Gu, Z., Rothberg, E., Bixby, R.: Gurobi optimizer reference manual.
http://www.gurobi.com (2016)

Haykin, S.S.: Neural Networks: A Comprehensive Foundation. Prentice Hall (1999)
Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: ReachNN: Reachability analysis of
neural-network controlled systems. ACM Transactions on Embedded Computing
Systems (TECS) 18(106), 1-22 (2019)

Hunt, K., Sbarbaro, D., Zbikowski, R., Gawthrop, P.: Neural networks for control
systems—A survey. Automatica 28(6), 1083-1112 (1992)

Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control (HSCC19). pp. 169-178 (2019)

Julian, K., Lopez, J., Brush, J., Owen, M., Kochenderfer, M.: Policy compression
for aircraft collision avoidance systems. In: Proceedings of the 35th Digital Avionics
Systems Conference (DASC16). pp. 1-10 (2016)

Julian, K.D., Kochenderfer, M.J.: A reachability method for verifying dynamical
systems with deep neural network controllers. CoRR abs/1903.00520 (2019)
Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: Proceedings of the 29th
International Conference on Computer Aided Verification (CAV17). Lecture Notes
in Computer Science, vol. 10426, pp. 97-117. Springer (2017)

Kouvaros, P., Lomuscio, A.: Parameterised verification for multi-agent systems.
Artificial Intelligence 234, 152-189 (2016)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Proceedings of the 26th Conference on Neural In-
formation Processing Systems (NIPS12), pp. 1097-1105. Curran Associates, Inc.
(2012)

Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
relu neural networks. CoRR abs/1706.07351 (2017)

Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification
of multi-agent systems. Software Tools for Technology Transfer 19(1), 9-30 (2017)
Maes, P.: Modeling adaptive autonomous agents. Artificial life 1(1-2), 135-162
(1993)

Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: Proceedings of the 27th International Conference on Machine Learning
(ICML10). pp. 807-814. Omnipress (2010)

NANESVerify: Neural Agent operating on a Non-deterministic Environment Sys-
tem Verify, https://vas.doc.ic.ac.uk/software/neural/ (2020)

Narodytska, N.: Formal analysis of deep binarized neural networks. In: Proceedings
of the 27th International Joint Conference on Artificial Intelligence, (IJCAI18). pp.
5692-5696 (2018)

Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
via bounded model checking. In: Proceedings of the 2nd International Joint Confer-
ence on Autonomous Agents and Multi-agent systems (AAMASO03). pp. 209-216.
IFAAMAS (2003)

34.

35.

36.

37.

38.

39.

40.

41.

Formal Verification of Neural Agents in Non-deterministic Environments 21

Penczek, W., Wozna, B., Zbrzezny, A.: Bounded model checking for the universal
fragment of CTL. Fundamenta Informaticae 51(1-2), 135-156 (2002)

Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified,
real-time object detection. The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR16) pp. 779-788 (2016)

Sutton, R.S., Barto, A.G.: Reinforcement Learning — An Introduction. MIT Press
(1998)

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks. In: Proceedings of the 2nd
International Conference on Learning Representations (ICLR14) (2014)

Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: Proceedings of the 7th International Conference
on Learning Representations (ICLR19) (2019)

Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Proceedings of the 32nd Conference on Neural Information
Processing Systems (NIPS18). pp. 6367—-6377. Curran Associates, Inc. (2018)
Winston, W.: Operations research: applications and algorithms. Duxbury Press
(1987)

Xiang, W., Tran, H., Rosenfeld, J.A., Johnson, T.T.: Reachable set estimation and
safety verification for piecewise linear systems with neural network controllers. In:
2018 Annual American Control Conference (ACC). pp. 1574-1579. AACC (2018)

A Comparison of Neural Network Tools for the

Verification of Linear Specifications of
ReLU Networks

Ziggy Attala, Ana Cavalcanti, and Jim Woodcock

University of York, UK

Abstract. There is an increasing interest in using deep neural networks
(DNNs) in robotic controllers and safety-critical systems for which veri-
fication is paramount. We have selected six modern neural network tools
that can verify linear specifications: NNV, ERAN, NeuralVerification.jl,
Marabou, SHERLOCK, and Reluplex. We evaluate these tools using two
benchmark networks: Network 1 of the ACAS Xu dataset, and a custom
example that shares key features with an implementation of a real robot
for use on a factory floor. Our primary insight is that, for the purposes
of verifying linear specifications of ReLU networks, Marabou is the most
efficient and usable tool. On the other hand, Marabou’s functionality is
limited to proving or disproving properties, while other tools can com-
pute unsafe input and output ranges for the properties. While there have
been detailed comparisons of the majority of the algorithms these tools
implement, this is, as far as we know, the first comparison of the tools.
For that, we use three benchmark problems.

Keywords: Formal Verification - NNV - ERAN - Neural Verification.jl -
Reluplex - Marabou - SHERLOCK

1 Introduction

Deep neural networks are gaining popularity for use in multiple sectors [23],
including automotive [23] and robotics [15]. There is, however, no widely ac-
cepted tool for verifying a general neural network; this paper delivers insights
into emerging tools. These insights inform verifiers on which tools to use in
various situations and provide guidance for the improvement and development
of tools, and on the utility and applicability of the algorithms and techniques
they implement. In addition, our work suggests how the tools can be used in
combination.

We have selected four criteria to compare the tools: usability, scalability, preci-
sion and applicability. Usability is concerned with the facilities for the definition
of a property to verify and of the neural network. Scalability explores how the
tools deal with larger and more complex networks. Precision refers to whether
the results are precise enough to provide proof of the property. Finally, applica-
bility refers to the type of networks that can be verified.

We explore neural networks for control systems as these are the most relevant in
robotics. Examples include a robotic arm network [31] and an airborne collision
avoidance system [16]. We are interested in verifying properties such as the
robotic arm does not reach an unsafe zone [31] or, if the intruder aircraft is
sufficiently far away, the network advises ‘clear of conflict’ [16].

We focus out comparison on linear properties. They can capture a wide range
of specifications, including control safety, adversarial robustness, and robotic
controller properties. Furthermore, the vast majority of techniques are concerned
with linear properties [13,16,18,25-29]. So, we focus our comparison on linear
properties.

In addition, our comparison is based on networks with ReLU activation func-
tions. They are widely used, powerful, and easily trained [22], and every verifi-
cation method and tool, as far as we know, is applicable to ReLU networks. Its
piecewise linear nature is the basis for the feasibility of most techniques.

We are aware of six other comparison works; but, as far as we know, we present
the first comparison of tools. There is information available about: several algo-
rithms in [19], but experimental results are not presented; two SMT-like tech-
niques in [10]; multiple convex relaxation methods in [24]; and interval bound
propagation methods in [14]. A survey benchmarking on varying problem sets is
in [30]. The work most similar to ours is [20]. The volume of experimental results
is comparable to that here, including property 10 on the ACAS network. They
are, however, focused on explaining the methods in a pedagogical manner.

The tools we have selected are those that contain functionality to verify gen-
eralised linear specifications: Matlab Toolbox for Neural Network Verification
(NNV) 1, ETH Robustness Analyzer for Neural Networks (ERAN) 2,

Neural Verification.jl 3, Reluplex *, Marabou °, and SHERLOCK 6. We evaluate
them on three benchmark properties of two networks: two properties of a small
neural network (TN) based on the implementation of a real robot, and property
one of Network 1,1 of the ACAS Xu neural networks.

TN is is a feed-forward and deep neural network with two hidden layers of
32 nodes each, with two input and one output node. This network shares key
features with control networks: low input and output dimensionality, and feed-
forward ReLU structure. It also has a low number of hidden layers and class
invariant input zones, which can be represented as linear properties.

Network 1,1 of ACAS Xu refers to one of the networks of the Airborne Collision
Avoidance Systems for Unmanned Aircraft (ACAS Xu) first presented by Katz

! //github.com/verivital/nnv

2 //github.com/eth-sri/eran

3 //github.com/sisl/NeuralVerification.jl

4 //github.com/guykatzz/ReluplexCav2017

5 //github.com/NeuralNetworkVerification/Marabou
S //github.com/souradeep-111/sherlock

et al. [16] in 2017. The ACAS Xu networks are a set of 45 neural networks
critical for ensuring unmanned aircraft avoid aerial collisions. It is desirable to
establish properties to guarantee the behaviour of these networks under certain
input domains, so ten properties have been identified.

In Section 2 we provide an introduction to each of the tools evaluated in this
work. In Section 3 we present our experiments in relation to the four evalua-
tion criteria set out earlier. In Section 4 we discuss these results, and Section 5
concludes and provides suggestions for future directions.

2 Preliminaries

In this section we provide an introduction to all the tools evaluated.

NNV, ERAN, and SHERLOCK are output range analysers [1,3,9]. Given an
input range, they compute an output range, and if it falls within the safe output
zone of the property the network is determined safe. This computation can either
be complete or incomplete, giving the output range or an over-estimation of the
output range. NNV and ERAN use sets to compute the output range.

NNV utilises polytopes, hyper-rectangles, halfspaces, and star sets. A polytope is
a generalisation in higher dimensions of a three-dimensional polyhedron. And a
hyper-rectangle is one of the simplest classes of polytopes [21]. This is defined
as all points between two upper and lower vectors: the rightmost and leftmost
corners of the rectangle given as x = (z!,...,2") and 7 = (z',...,2") [21]. A
halfspace is the set of points that satisfy: a - x < b where a is an n-dimensional
vector [21]. Finally, a star set is an efficient representation of high-dimensional

polytopes. This forms the basis for the methods implemented in NNV.

Any bounded convex polytope can be represented as a star set. This is a tuple
(¢, V, P) where ¢ € R is the centre, V = {v1,v2,...,0m } is a set of m vectors in
R™ called basis vectors, and P : R™ — {T, L} is a predicate. The set of states
represented by the star is: {z|x = ¢+ X (a;v;) and P(a1,...,am) = T}

NNV has implemented multiple methods for output range analysis: complete out-
put range verification in exact-star and exact-poly, incomplete output range anal-
ysis in approx-zono, approz-star, abs-dom (which uses polytopes) and approz-hr
(which uses hyper rectangles). We consider them all here.

ERAN has three modes of operation. L;, s and geometric analysis are applicable
to image domain specifications, so are not considered here. Linear specifications
are defined using zonotopes, a centrally symmetric polytope [21]. ERAN de-
fines zonotopes using affine arithmetic, an extension of interval arithmetic. For
analysing zonotopes, ERAN has two methods: a hybrid analysis RefineZono, and
an incomplete output range analysis DeepZono. We consider both.

A variable € R can be defined in interval arithmetic through [a,b], where a
and b are floating point numbers and a < z < b [12]. Affine arithmetic extends
interval arithmetic by associating an affine form & = xg 4+ z1€1 + ... + €, With

each quantity, where xq is the central value and z1, ..z, are known as the partial
deviations, associated with the noise symbols € [12]. A zonotope defined in affine
form associates an affine expression & with each of its dimensions. As the affine
expressions are related, their error terms are shared.

SHERLOCK utilises conjunctions of linear inequalities as input [9]. SHERLOCK
combines gradient-based local search with MILP solving: it solves a series of
MILP feasibility problems with local search steps. SHERLOCK, however, is
only applicable to networks with a single output node [11]. The implementa-
tion we evaluate is the implementation https://github.com/souradeep-111/
sherlock, as it has proved impossible to build the newer https://github.com/
souradeep-111/sherlock_2, even with support from the authors.

All the above tools do not require an output set to be defined as they are output
range analysers. Defining an unsafe zone after computation can be useful for the
analysis of the generated output range sets, but is not necessary.

Reluplex and Marabou are SMT solvers for neural networks [2,8,16,17]. The
implementation of Reluplex we have evaluated was the proof of concept imple-
mentation in [8]. They find an activation, a single value within the bounds of the
problem given. As they compute a single point, the property is inverted, and it
is proved if no activation that satisfies the inverse property is found. The input
and output constraints are defined using multiple linear inequalities.

NeuralVerification.jl implements 17 different verification methods, both SMT
solvers and output range analysers. Inputs are polytopes and hyper-rectangles,
and as output it uses halfspaces and polytope complements [4]. Polytope com-
plements define outputs for SMT solvers, and halfspaces are used for the output
specification for output-range analysers. However, we have been able to run only
five of these methods: SHERLOCK (the algorithm and tool are referred to by
the same name), BaB (an SMT solver), Duality, ExactReach, and Ai2. Of these
only BaB and SHERLOCK ran on both properties of TN.

In the next section, we address our evaluation criteria.

3 Evaluation Experiments

We evaluate the tools based on four criteria: usability (Section 3.1), scalability
(Section 3.2), precision (Section 3.3) and applicability (Section 3.4).

3.1 Usability

Specification of Properties In the following, we describe how an I/O property
of a neural network can be defined in each tool.

NNV 1/0 properties in NNV are defined by the input-set object used by their
reach methods. Defining an unsafe output set, however, is a simpler way of
evaluating the generated output reachable set. Each set is defined as a custom

MATLAB object. The simplest way to build these objects is to build a hyper-
rectangle based on a lower and upper bound vector, and then convert this using
NNV’s built in methods. If an output set is defined, NNV is also able to generate
an intersection with the generated reachable set with the safe output set.

ERAN The input property is defined as a zonotope in affine form. This allows
any convex polytope to be defined through shared error terms, but for linear
properties we define a simple hyper-rectangle input in affine interval form.

NeuralVerification.jl Properties are defined through the creation of input and
output set objects, in a similar manner to NNV. NeuralVerification.jl also uses
an output set with reachability methods.

There are four implemented types of set used as I/O definitions, these are:
hyper-rectangles, halfspaces, hpolytope (halfspace polytopes) and polytope com-
plements. Hyper-rectangles, halfspaces and hpolytopes are the most commonly
used; polytope complements are used for the output sets for solvers. This is
because the output set needs to be the negation of the safe zone, and a Poly-
topeComplement of a closed set is necessarily an open set, and non-convex.

Reluplex There is no distinct method to define properties; the code that defines
the method has to be modified to deal with the desired input.

Marabou This implementation requires properties to be defined using a set of
inequalities, relating to the input and output nodes. The input nodes are defined
as T,, and the output nodes as y,, where n is the index of the node.

SHERLOCK The input is defined through input constraints as a hyper-rectangle.
There is no way to define output zones, and properties are verified through
analysing the computed output range.

Neural Network File Formats The file formats used to define neural net-
works varies, but the key information which all file formats support is: the weight
matrix and the bias vector for each layer. We primarily focus on human read-
able neural network file formats, since only ERAN is able to natively support
non-text based file formats such as ONNX [7], Tensorflow .pb and .meta files [1].
NNV is also able to support these, but through an extension NNVMT [6].

NNet Format The nnet file format was created in 2016 to define the ACAS
networks in a human-readable format [5]. It contains normalization information
and the structure of the network, including input and output dimensions. The
primary drawback of this format is that it is only applicable to feed forward
fully connected ReLU networks [5]. The nnet file format is utilised by Reluplex,
Marabou and NeuralVerification.jl.

ERAN Text Data Formats ERAN’s text-based formats are TensorFlows .tf and
PyTorch’s .pyt. Unlike nnet files, they can define wider types of activation func-
tion, including tanh, Sigmoid, and Affine functions. They can also define con-
volutional networks. Neither file format, however, is readable because the input
and output dimension of the network has to be inferred from the weight matrices
themselves. Also these file formats do not contain a definition of the structure
of the hidden layers, which has to be inferred from the matrices. Only .pyt files
contain inherent normalization information.

SHERLOCK Format SHERLOCK utilises a custom file format that defines
solely a feed-forward ReLU network. The format defines a network neuron by
neuron for small networks, this can provide readable information about the inter-
nal structure of the network, because it flattens the weight matrix for each layer
and delimits the weights via new line characters. For larger networks, however,
this is not a readable file format.

NNV NNV builds networks layer by layer, given the activation function, weight
matrix and bias vector for each layer. This information can be loaded through
any file format supported by MATLAB, for example, mat, csv and txt files.
There is, however, no standard neural network file format support without the
use of NNVMT.

A property can be defined by inequalities [2,8,9], or convex sets [1,3,4]. A neural
network is defined through associating a weight matrix, a bias vector, and an
activation function for each layer, which can be defined node by node, [9], layer
by layer [3], or through nnet, pyt or tf files [1,2,8,20].

3.2 Scalability

We have installed and built the tools on Linux version: 'Ubuntu 18.04.2 LTS’,
apart from NNV which was installed on MATLAB 2019a, Windows version’.
We have used a i5-8265U CPU with 8GB RAM, with the timeout for each
experiment set to 2 hours. We have repeated each experiment that terminated
10 times.

For the NeuralVerification.jl implementations, we have obtained impossible re-
sults using Reluplex. In addition, we have experienced problems executing Ex-
actReach and Ai2 on both benchmark networks.

RefineZono is a hybrid method; results are for RefineZono with its complete
part at one second, the default value. We have also ran RefineZono with a 1000
second timeout, however, it was still unable to obtain tight enough bounds to
verify property one of ACAS Xu. Finally, we have ran RefineZono using its full
complete mode, although this timed out. The result of RefineZono with milp
timeout 1000 is discussed in the precision section.

7 www.mathworks . com/products/matlab.html

Table 1. Scalability Results (Seconds, 2dp)

TN P1: TN P2: AX11y:
Tool: Method: Mean Min Max RES Mean Min Max RES Mean Min Max RES
NNV Exact-Star ~ 95.18 77.33 122.57 SAT 73.455.72 93.57 SAT T/O T/O T/O T/O
Exact-Poly * * * * * * T/O T/O T/O T/O
Approx-Star 4.83 3.94 6.81 4.67 4.67 5.78 42.4 30.83 55.38
Zono 0 0 o0.01 0.01 0 0.01 0.03 0.02 0.04
Abs-dom 494 3.88 6.81 4.71 3.7 5.81 40.86 19.55 49.09
Approx-Hr 0.01 0 0.05 0.01 0 0.02 0.01 0.01 0.02
ERAN DeepZono 0.06 0.06 0.07 0.06 0.06 0.06 0.15 0.09 0.16
RefineZono 3.42 3.24 3.6 SAT 3.85 3.67 4.04 SAT 38.42 37.21 39.47
SHERLOCK SHERLOCK * * * 09 0.72 1.08 SAT N/A N/A N/A
NeuralVerification.jl SHERLOCK 28.64 28.22 29.19 SAT 43.81 41.68 46.12 SAT N/A N/A N/A
BaB T/O T/O T/O T/O T/O T/O N/A N/A N/A
Marabou Marabou 1.21 0.75 1.52 SAT 0.44 0.43 0.48 SAT 130.84 130.22 134.22 SAT
Reluplex Reluplex * * * * * * 1348.9 1119 2620 SAT

Table 1 displays the results of the experiments on the three benchmarks. The
‘RES’ column displays the result of the method: ‘SAT’, the property is satisfied;
‘AMB’, the result of the method was ambiguous, that is, the bounds were not
tight enough to prove the property; ‘ERR’, the method did not execute on the
property and the time is displayed as *; ‘T /O’ represents a time out result.

From Table 1, it can be seen that Marabou is the only tool able to verify all
three properties, NNV and ERAN are able to verify TN, but only using complete
methods, and SHERLOCK is able to verify P2, but produces errors on TN

P1.

3.3 Precision

Comparison of Bounds (Normalized) for Acas Xu Logit 1 (CoC) on Network 1_1

NNV:Approx-Hr

NNV:abs-dom 1 =

ERAN:RefineZono:1000 ///////// 77. Zonotope
4 Z Hybrid Zonotope
(/N Star
Actual i== Polytope
=t Hyper-Rectangle

10* 10% 10°
Upper Bound

Fig. 1. ACAS Xu P1 Bounds Comparison

In this section we evaluate the quality of the output bounds produced by the
incomplete methods implemented by the tools. These bounds may not be tight
enough to prove the property in question.

Figures 1 and 2 show the positive bounds generated by the methods of the tools,
using logarithmic scaling. Some techniques generate negative bounds, but we
record only the positive bounds, as all networks have ReLU output layers. In ad-
dition, the bounds given by complete methods are displayed for reference.

One of the main observations we can make from this is that the type of convex
set used by a method significantly impacts the bounds generated. Ordering them
from least to most precise we have: hyper-rectangles, zonotopes, polytopes then
star sets. One exception is that hyper-rectangles are slightly more precise than
zonotope methods on ACAS Xu. RefineZono also involves an additional MILP
component as well as a zonotope abstract domain formulation.

TN P1 TN P2
NNV:Approx-Hr {FRERRAARE AR NNV:Approx-Hr AR e
ERAN:DeepZono {//// /1L /SIS LSS SSS LSS ERAN:DeepZono {//// /1 /1SS SV SIS S S S
NNV:ApPprox-Zono Y/ /A /A SIS IIIL, NNV:Approx-Zono [/ /L1 1A/ LIS S
NNV:abs-dom | R NNV:abs-dom | IEEEE SRR
NNV:Approx-Star X XXX NNV:Approx-Star {3 XX XXX X XXX
NV.jl:SHERLOCK {lll NV.jl:SHERLOCK]_ 777, Zonotope
7/ Hybrid Zonotope
SHERLOCK* SHERLOCK* % Star
ERAN:RefineZono{./ ERAN:RefineZono/ / / ./ /' / / / /7, """ Polytope
- Hyper-Rectangle
NNV:Exact-Star NNV:Exact-Star mmm Gradient Search
107! 10° 10t 10° 10t
Bounds Bounds

Fig. 2. TN P1 and P2 Bounds Comparison

3.4 Applicability

Marabou and Reluplex are applicable solely to feed-foward fully connected ReLU
networks, as the modified Simplex algorithm they are based on does not allow
for other types of non-linearity. SHERLOCK is also solely applicable to ReLU
networks, and contains the additional limitation of only one output node.

ERAN implements abstract domain methods, and so is the most widely appli-
cable tool. It is applicable to ReLU, Sigmoid, and Tanh activation functions; it
is also applicable to feedforward, convolutional, and residual layers.

NNV’s methods vary as to their applicability. The exact methods are only appli-
cable to ReLLU or linear activation functions, while their approximate reachabil-

ity modes are, in addition, applicable to sigmoid and tanh activation functions.
Both types of method are also applicable to convolutional layer types.

Of the methods we considered of NeuralVerification.jl, those applicable to only
ReLU networks are: BaB, Reluplex, ExactReach, ConvDual and SHERLOCK.
BaB is also only applicable to one output. The implementation of Ai2 is ap-
plicable only to ReLLU networks, however, Ai2 is applicable to further types of
networks [13]. Duality is applicable to any monotone activation function.

4 Evaluation

Marabou is the most successful tool for the verification of ReLLU networks, over-
all, in accordance with our criteria. It is the most usable, scalable and precise,
but is one of the most limited tools in terms of applicability.

The most usable method for defining properties is Marabou’s. It is the only tool
with a dedicated file format for the specification of a complete property. ERAN
has a file for specifying a zonotope in affine form, but this is only the input to
the network not a complete property definition.

Further conversion tools would be useful for usability, such as, a converter from
linear inequality to set representation, converters between various representa-
tions of sets, and a converter between generator-form zonotopes and affine-form
zonotopes, as used by ERAN and NNV, respectively. These facilities could fa-
cilitate obtaining complementary results from multiple tools.

In terms of defining networks, nnet files are the most usable. This is for two main
reasons: they display the network structure efficiently, and they contain normal-
ization information. In some situations, however, viewing the exact weightings
for each node with a node-by-node file structure may be useful. This can give
further information into the weighting assigned to each feature of the data, al-
though this is only feasible with small, simple networks.

The most scalable tool for complete verification is Marabou, obtaining a runtime,
on TN, 2.8x faster than ERAN, the next fastest complete tool. It has a runtime
78x faster than NNV’s complete analysis on TN, and NNV timed out in the
verification of ACAS Xu. The only tools for complete verification that terminated
for ACAS Xu Property 1 was Reluplex and Marabou.

The runtime of these tools was influenced by the bounds of the property chosen
about the network. This is very minor in most tools, but Marabou experienced a
difference of 2.71x from TN property 1 to property 2. For comparison, the largest
variation other than Marabou was SHERLOCK with a variation of 1.52x.

The most precise tool for incomplete analysis is ERAN (utilising RefineZono);
this, however, is also the least scalable incomplete method. Only Marabou,
ERAN and SHERLOCK are precise enough to verify TN properties and only
Marabou and Reluplex are precise enough to verify the Acas Xu property.

In terms of verifying ReLLU neural networks, all tools are applicable to all net-
works, but BaB, from NeuralVerification.jl and SHERLOCK are unable to verify
networks with more than one output node. This is a limitation from the algo-
rithms defining their methods. ERAN and NNV are the only tools applicable to
types of neural network beyond feed-forward fully connected networks.

NNV, while not quite the most scalable, precise or applicable, has the highest
degree of functionality of all tools presented. Not only is it an output range
analyser, it has methods to generate the unsafe input zones of a problem, func-
tionality no other method is able to perform. One advantage of this is that
the unsafe input zone can be used as an adversarial input generator for robust
training [28]. Furthermore, NNV contains output visualisation and intersection
methods, functionality also unique to NNV. This enables a clear representation
of the decision logic of a neural network.

5 Conclusion

Based on the examples we have considered, in terms of usability, the best tool
is Marabou, and the worst is SHERLOCK. For scalability, the best is NNV and
the worst is Reluplex. For precision, the best is Marabou and the worst is NNV.
Lastly, for applicability, the best is ERAN and the worst is SHERLOCK.

We have compared multiple state-of-the-art tools for verifying ReLLU neural net-
works. We have compared file formats for the definition of properties and the
definition of neural networks. We have also given insights on how the property,
network size, and type of input set affects the operation of these tools. This can,
not only help operation of these tools, but help to make an informed decision on
the type of tool appropriate to a network and problem.

Our works suggests: first, possible ways of combining tools so that their results
complement each other, and increase the explainability of the network. Second,
tool combination and integration is an interesting avenue for future work. Fi-
nally, that a unified format of representing linear inequalities is useful in the
development of verification tools.

This work can help inform the decision process in selecting tools to verify neural
networks, as well as how to use them in combination. Further discussion of the
usability of these tools is needed and can inform further development of tools in
this area. Further exploration into the utility of these tools and methods is of
utmost importance to the emerging area of neural network verification.

Acknowledgements

This work is funded by the Royal Academy of Engineering grant CiET1718/45,
and UK EPSRC grants EP/M025756/1 and EP/R025479/1. No new primary
data was created as part of the study reported here.

References

1.

o o

© ® N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Eth robustness analyzer for neural networks (eran), //github.com/eth-sri/eran,
accessed 14/04/20

. Marabou, //github.com/NeuralNetworkVerification/Marabou, accessed
15/04/20
Matlab toolbox for neural network verification (nnv), //github.com/verivital/

nnv, accessed 13/04/20

Neuralverification.jl, //github.com/sisl/NeuralVerification.jl, accessed
14/04/20

Nnet repository, https://github.com/sisl/NNet, accessed 14/04/20

Nnvmt: A translation tool for feedforward neural network models, //github.com/
verivital/nnvmt, accessed 20/04/20

Onnx, //github.com/onnx/onnx, accessed 14/04/20

Reluplex cav 2017, //github.com/guykatzz/ReluplexCav2017, accessed 14/04/20
Sherlock, //github.com/souradeep-111/sherlock, accessed 14/04/20

Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: A Unified View of
Piecewise Linear Neural Network Verification. In: NIPS’18: Proceedings of the 32nd
International Conference on Neural Information Processing Systems. pp. 4795
4804 (December 2018)

Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for
deep neural networks (2017), arXiv:1709.09130

de Figueiredo, L.H., Stolf, J.: Affine arithmetic: Concepts and applications. Nu-
merical Algorithms 37, 147-158 (2003), doi.org/10.1023/B:NUMA.0000049462.
70970.b6

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: Safety and robustness certification of neural networks with abstract in-
terpretation. In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 3-18
(2018)

Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C., Uesato, J., Arand-
jelovic, R., Mann, T., Kohli, P.: On the Effectiveness of Interval Bound Propagation
for Training Verifiably Robust Models (2018), arXiv:1810.12715

Horne, W., Jamshidi, M., Vadiee, N.: Neural networks in robotics: A
survey. Journal of Intelligent and Robotic Systems 3, 51-66 (03 1990).
https://doi.org/10.1007 /BF00368972

Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An Effi-
cient SMT Solver for Verifying Deep Neural Networks. Lecture Notes in Computer
Science p. 97-117 (2017)

Katz, G., Huang, D., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zelji¢, A., Dill, D., Kochenderfer, M., Barrett, C.: The
Marabou Framework for Verification and Analysis of Deep Neural Networks. In:
Computer Aided Verification, CAV 2019. Lecture Notes in Computer Science, vol.
11561. Springer, Cham (07 2019)

Krishnamurthy, Dvijotham, Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A Dual
Approach to Scalable Verification of Deep Networks (2018), arXiv:1803.06578
Leofante, F., Narodytska, N., Pulina, L., Tacchella, A.: Automated Verification of
Neural Networks: Advances, Challenges and Perspectives (2018), arXiv:1805.09938
Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for
Verifying Deep Neural Networks (2019), arXiv:1903.06758

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Maler, O.: Computing reachable sets: An introduction (2008),
//semanticscholar.org/paper/Computing-Reachable-Sets-j
3A-An-Introduction-Maler/299949aef669b547a36c091b768cade091d35532,
accessed 30/04/20

Nwankpa, C., Ijomah, W., Gachagan, A., Marshall, S.: Activation Functions:
Comparison of trends in Practice and Research for Deep Learning (2018),
arXiv:1811.03378

Salay, R., Czarnecki, K.: Using Machine Learning Safely in Automotive Software:
An Assessment and Adaption of Software Process Requirements in ISO 26262
(2018), arXiv:1808.01614

Salman, H., Yang, G., Zhang, H., Hsieh, C.J., Zhang, P.: A Convex Relaxation
Barrier to Tight Robustness Verification of Neural Networks. In: NeurIPS 2019
(2019)

Singh, G., Gehr, T., Mirman, M., Pischel, M., Vechev, M.: Fast and Effective
Robustness Certification. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 31, pp. 10802-10813. Curran Associates, Inc. (2018), http://papers.
nips.cc/paper/8278-fast-and-effective-robustness-certification.pdf
Singh, G., Gehr, T., Piischel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proceedings of the ACM on Programming Languages 3, 1-30 (01
2019). https://doi.org/10.1145/3290354

Singh, G., Gehr, T., Piischel, M., Vechev, M.: Boosting robustness certification of
neural networks. In: International Conference on Learning Representations (ICLR)
(2019)

Tran, H.D., Manzanas Lopez, D., Musau, P., Yang, X., Nguyen, L.V., Xiang, W.,
Johnson, T.T.: Star-Based Reachability Analysis of Deep Neural Networks. In: ter
Beek, M.H., Mclver, A., Oliveira, J.N. (eds.) Formal Methods — The Next 30 Years.
pp. 670-686. Springer International Publishing, Cham (2019)

Tran, H.D., Musau, P., Lopez, D.M., Yang, X., Nguyen, L.V., Xiang, W.,
Johnson, T.T.: Parallelizable Reachability Analysis Algorithms for Feed-Forward
Neural Networks. In: Proceedings of the 7th International Workshop on
Formal Methods in Software Engineering. p. 31-40. FormaliSE ’19, IEEE
Press (2019). https://doi.org/10.1109/FormaliSE.2019.00012, https://doi.org/
10.1109/FormaliSE.2019.00012

Xiang, W., Musau, P., Wild, A.A.] Lopez, D.M., Hamilton, N., Yang, X., Rosen-
feld, J., Johnson, T.T.: Verification for Machine Learning, Autonomy, and Neural
Networks Survey (2018), arXiv:1810.01989

Xiang, W., Tran, D., Johnson, T.: Output reachable set estimation and verifica-
tion for multi-layer neural networks. IEEE Transactions on Neural Networks and
Learning Systems PP (08 2017). https://doi.org/10.1109/TNNLS.2018.2808470

Efficient Verification of ReLU-based Neural
Networks via Dependency Analysis

Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and
Ruth Misener

Department of Computing, Imperial College London, UK
{e.botoeva,p.kouvaros, j.krongvist,a.lomuscio,r.misener}@imperial.ac.uk

Abstract. We introduce an efficient method for the verification of ReLLU-
based feed-forward neural networks. We derive an automated procedure
that exploits dependency relations between the ReLU nodes, thereby
pruning the search tree that needs to be considered by MILP-based for-
mulations of the verification problem. We augment the resulting algo-
rithm with methods for input domain splitting and symbolic interval
propagation. We present Venus, the resulting verification toolkit, and
evaluate it on the ACAS collision avoidance networks and models trained
on the MNIST and CIFAR-10 datasets. The experimental results ob-
tained indicate considerable gains over the present state-of-the-art tools.

Keywords: Feedforward ReLU networks - Mixed Integer Linear Pro-
gramming - Dependency analysis.

1 Introduction

Artificial Intelligence (AI) methods are increasingly used in safety critical appli-
cations including, but not limited to, autonomous vehicles, avionics, and power
generation. These domains typically require a certification aimed at establishing
the safety of the application to be deployed.

Formal verification methods commonly used in software verification cannot
address the validation of AI applications due to the inherently different com-
ponents. In particular, Al applications increasingly utilise neural networks in
key parts of their designs, most notably in perception and control modules. Due
to this, the area of formal verification of neural networks has recently received
considerable attention. Simply put, methods for assessing neural systems can
provide the mathematical underpinning for safely deploying a wide number of
AT applications.

The typical decision problem tackled by verification approaches is whether a
neural network, or a closed-loop system in which neural networks are present, can
output particular values, i.e., output reachability. Reachability is often studied
in conjunction with local robustness properties, i.e., whether for a given input,
e.g., an image, small alterations of this input can cause output variation, e.g., a
different classification. The present state of the art [18] includes several ways of
formulating this problem (see related work below); however, no method scales

2 E. Botoeva et al.

to the analysis of the neural networks presently used in industrial strength ap-
plications, including autonomous vehicles. Therefore, it remains of considerable
importance to develop more scalable approaches. This is the aim of the present
contribution.

This paper introduces a novel, MILP-based approach to verifying feed-forward
ReLU-based neural networks. Rectified Linear Units (ReLUs) are one of the most
commonly-used activation functions in vision and are the typical object of study
in the above cited literature. This manuscript develops the concept of depen-
dency. Two nodes in a neural network are in a dependency relation if there is
a strict connection between their active or inactive state during the overall net-
work computation. As we show, dependency can be exploited to improve the
performance of a MILP formulation. Crucially, and differently from the related
state-of-the-art, our dependency analysis is not aimed at reducing the num-
ber of variables in the verification problem, but rather at reducing the search
space during a branch-and-bound approach to generate satisfiable assignments.
This paper (i) develops effective methods exploiting these dependencies and (ii)
integrates the methods into a larger implementation incorporating scalability-
improving methods such as domain splitting. The resulting implementation gen-
erates speed-ups of at least one order of magnitude against competing methods.

The rest of the paper is organised as follows. After discussing related work
below, Section 2 reports key concepts on neural networks and related verification
approaches. Section 3 first presents the theoretical contribution on dependency
analysis and then gives a dependencies-based verification algorithm. Section 4
presents a toolkit exploiting dependency analysis. Section 5 reports the exper-
imental results obtained on the MNIST, CIFAR-10, and ACAS datasets and
compares these against state-of-the-art implementations.

Related Work. Verification methods for neural networks can be partitioned
into complete and incomplete ones. Complete methods can in principle return
a definite answer as to whether the property in question is satisfied. Differently,
incomplete methods may erroneously conclude that the network is not robust
when it actually is or a certain output is reachable when it is actually not.

Incomplete methods include approaches based on duality [6], abstract inter-
pretation [10], symbolic interval analysis [27, 25] and semidefinite relaxations [20,
8]. While the techniques differ, they all overestimate the output of the network
from a given input region in an attempt to draw a conclusion from this. While
incomplete methods may be very efficient in some cases, they are not comparable
to the ones here presented as they may not answer the verification problem due
to false negatives.

Complete approaches can be divided into 3 main groups: (i) MILP-based [3,
19,5,9,4,23] techniques that formulate the verification problem at hand as a
mixed integer linear program; (ii) SMT-based [7, 13, 14] techniques that encode
the verification problem as the satisfiability modulo theory problem; (iii) tech-
niques that use a combination of overestimation and refinement techniques to
get a definite answer [26, 25].

Title Suppressed Due to Excessive Length 3

Closely related to this paper is some of the recent work, which has focused on
conquering scalability and increasing precision in incomplete approaches. These
include: (i) computing tight bounds using symbolic interval analysis [25, 27]; (ii)
input splitting [26, 14, 21]; (iii) optimised MILP formulations [4, 23, 2]. The work
here presented uses MILP formulations to the verification problem combined
with input splitting and symbolic interval analysis methods. However, differently
from the work cited above, it uses novel heuristics based on dependency analysis
to guide the search for feasible solutions.

2 Background

This section summarises and fixes the notation on some of the key notions used
later in the paper.

Feed-forward neural networks. A feed-forward neural network (FFNN)
is a directed acyclic graph whose nodes are structured in layers. The first layer
is the input layer, also referred to as layer 0, the last layer is the output layer,
also referred to as layer k, and every layer in-between is a hidden layer, also
referred to as layer i, for 1 < i < k. Every node other than an input node is
connected to every node in the preceding layer. Each edge is associated with
a weight, which is learned during the training phase. Given an input vector,
the network computes a function by propagating the input through the network,
where, at each step, a node’s output results from applying an activation function
to the pre-activation of the node, which is the weighted sum of the outputs of
the nodes from the previous layer. Here, we only consider the ReL U activation
function defined by ReLU(z) £ max(z,0) for z € R.

We denote by s; the number of nodes in layer i. We use n; , to refer to
the g-th node of layer ¢. Given an input x to the network, we write X; ; (X4,
respectively) for the pre-activation (output, respectively) of the node n; 4. For
a set of inputs over a bounded domain, every node is associated with lower and
upper pre-activation and activation bounds. These can be derived in a number
of ways discussed below. We write im and 0, 4 (1; ; and u; 4, respectively) for the
pre-activation’s (output’s, respectively) lower and upper bounds. Similarly, %X;
and x; refer to the vector of pre-activations and outputs of layer i over domains
[L—, ;] and [1;, u;], respectively, where xo = x, and 1y and ug are the input lower
and upper bounds. We write W, and b; to refer to the weight matrix and bias
vector of layer i, i > 1, respectively.

Given an input x and for ¢ > 1, the output x; of layer ¢ is computed from
x;_1 by applying the function f;: R%-1 — R® which is defined as fi(x;_1) =
ReLU(W;x;—1 + b;) = ReLU(%;), where the ReLU function is applied element-
wise. Given the above, a neural network of k + 1 layers, is defined as a function
f: R% — R®k corresponding to the composition of the functions f; computed
by each layer 4, i.e., f(x) 2 fu(... f1(x)...).

A ReLU node n; 4 can be in one of two states. It is in the strictly active
state (or, is strictly active), denoted st(n; ,) = T if 1;, > 0. Tt is in the strictly
inactive state (or, is strictly inactive), denoted st(n; 4) = L, if @1; ; < 0. A stable

4 E. Botoeva et al.

node is a node that is either strictly active or strictly inactive. Otherwise, the
node is said to be unstable, denoted st(n; 4) =?.

Verification problem. Given a network f: R — R® and a specifica-
tion (X, Xx) C R% x R% the verification problem determines whether Vx, €
Xo: X € X

To enable the MILP representation, we hereafter assume that Xj is an inter-
section of finite sets of polyhedra. The local robustness and reachability problems
are instantiations of the verification problem. The local robustness problem es-
tablishes if the network’s output is unaffected by small perturbations of a given
input x’. In the case of image classifiers, local robustness checks if all images
within a norm-ball of x’ are classified equivalently. The problem can be repre-
sented by setting Xy = {x € R* | ||x — x'||, < €}, for some ¢ > 0 and norm p,
and Ay = {xp € R® | Vi # c¢: (xx); < (Xg)c}, where (x3); is the j-th component
of x5, and c is the class of x'.

The reachability problem establishes if there exists an admissible input in a
given set Z for which the network computes a given output y. The reachability
problem is not directly expressible as the verification problem defined above as
it includes an existential quantification over the inputs. The dual problem can,
however, be represented by taking Xy = Z and X}, = R% \ {y}. Therefore,
the answer to the reachability problem is the complement of the answer to the
verification problem encoded as the dual above.

MILP formulation. The verification problem admits a precise represen-
tation as a Mixed Integer Linear Program (MILP) by means of the “big-M”
encoding [1]. Specifically, the corresponding MILP program is feasible iff the
answer to the verification problem is no. Assuming the pre-activation bounds
of the nodes have already been calculated (see below), the MILP encoding of
a node n; , depends on its state. If the node is strictly active, then it can be
encoded by x; 4 = X; 4. If the node is strictly inactive, then it can be encoded
by x;4 = 0. Otherwise, the encoding of the node is given by:

Xi.q Z 07 Xi,q Z ii,qv

Xiq < Wiy 0ig, Xig < Rig — lig - (1= 0ig),
where 0; 4 is a binary variable such that d;, = 0 iff x; 4 = 0 and ;4 = 1 iff
Xij =)A(i’q.

For an MILP program comprising a set A of binary variables, a (partial)
configuration is a (partial) function h : A — {0,1} that assigns to each vari-
able (some of the variables) a value from {0,1}. The set of all possible partial
configurations is said to be the program’s configuration space.

A leading approach for solving MILP programs is the branch-and-bound
method. In branch-and-bound, each integrality constraint §; ; € {0, 1} is relaxed
to a linear constraint J; ; € [0, 1], thereby defining a linear program which can
be solved in polynomial-time [12]. Integrality is iteratively enforced by dividing
the search domain into sub-regions excluding fractional solutions. In the context
of neural networks, the efficacy of branch-and-bound depends on (i) the number
of binary variables, i.e., the number of unstable nodes, and (ii) the tightness of
the linear relaxations, i.e., the tightness of the pre-activation bounds.

Title Suppressed Due to Excessive Length 5

Calculating bounds. Interval arithmetic derives pre-activation bounds by
propagating the interval of the input domain through the network. However, the
resulting bounds are often over-approximated as the method neglects dependen-
cies between the input nodes, and propagating the over-approximated bounds
leads to larger over-approximations following each layer. To enable tighter ap-
proximations, rather than propagating concrete intervals, approaches based on
symbolic interval analysis [25] define linear equations for the lower and upper
bounds which are built from variables expressing the inputs of the network. To
tackle the non-linearity of the ReLU function, propagating the equations involves
their linear relaxation [25].

Lastly, even tighter bounds can be obtained by splitting the input domains
into several sub-domains and solving the verification problem for each sub-
domain [26, 25, 14].

3 Dependency Analysis

As discussed in the previous section, a major impediment to the scalable verifica-
tion of ReLLU-based FFNNSs is the configuration space generated by the piecewise
linearity of the ReLLU nodes. Several approaches have been put forward for re-
ducing the number of non-linearities that need to be considered for solving the
verification problem. In particular, techniques that split the input domain have
been shown effective in stabilising the ReLLU nodes, thereby generating easier
verification problems whose solutions can be combined to decide the original
problem in a more efficient manner. Still, since the number of splits that need
to be carried out grows exponentially in the number of input dimensions, net-
works with high input dimensionality remain hard to tackle. To overcome this,
we introduce a technique that exploits what we define below as the network’s de-
pendency relation to reduce the configuration space that needs to be considered
in solving a verification problem. Informally, the network’s dependency relation
can be used to stabilise a ReLLU node on the basis of an assumed stable state of
another node. Formally it is defined as follows.

Definition 1 (Dependency relation). Given a neural network f that com-
prises a set of unstable nodes U, the dependency relation for U, D, CUxU s
the set of all pairs (n; q, nj.r) such that st(n; ¢) #7 = st(n;) #7.

A node n; , depends on a node n; 4 if whenever n; 4 is either strictly active or
inactive, then n; , has to be either strictly active or inactive. It follows that the
configuration space generated by a branch-and-bound method can be reduced by
stabilising n; , whenever n; 4 becomes stable. In particular, for a network with n
unstable nodes, there are 2"~2 configurations that violate a given dependency;
therefore, each dependency provides a means to reduce the configuration space
by a factor of 1/4.

Ezxample 1. Consider the network shown in the left part of Figure 1. In the figure
each interval next to a node denotes the pre-activation bounds of the node. Note

6 E. Botoeva et al.

~1,2] [-1,2]

[0,1] (*0,1 —» @
[—1,1] (¥0,2 —» @
>< T

[—2,1] [0, 3]

Fig. 1. Left: Feedforward neural network exhibiting the dependency “if n; » is inactive,
then ng ; is active”. Right: Depiction of the configuration space reduction induced by
the dependency.

that nodes n; 2 and ng ; are unstable. Assume that a branch-and-bound method
branches on node n; s, thereby splitting the optimisation problem into two sub-
problems: one where n; » is strictly active and one where n; » is strictly inactive.
Consider the latter sub-problem. We have that 1; = 0 and u; » = 0. Therefore,
lby=1-0+-1-0=0and tig; = 1-2—1-0 = 2. Hence, ng ; is strictly
active, and consequently, (n; 2,n2 1) € D;. The right part of Figure 1 depicts
the configuration space satisfying said dependency.

We now proceed to derive a procedure for computing a network’s depen-
dency relations. To ease the presentation, we express dependency relations as
unions of four disjoint sets Dy = U, _ic(7 1y Dy*, where each D7 comprises
dependencies pertaining to the ReLU states z and 2/, i.e.,

D7 2 (Mg, ny,0) | st(nig) = 2 == st(ny,) = 2'}.

Also, we distinguish between consecutive- and intra-layer dependencies, which
require a different algorithmic treatment. We begin by studying dependencies in
the same layer.

Intra-layer dependencies. A dependency (n; 4, n;,) is said to be an intra-
layer dependency if i = j. To compute the dependency relation, given a pair of
nodes, we compute the lower and upper bounds of a node under the assumption
that the pre-activation of the other is zero, and use the bounds to determine the
dependencies.

Formally, for a pair of nodes n; 4, n;,, we define X; 5 ,—¢ as the set of pre-
activations of n; ; when the pre-activation of n, , is zero:

Xi,q,r=0 £ {Wi)g - xi—1 + (bi)g | (Wi)rxi—1 + (bi)r = 0} .

Geometrically, this can be viewed as the intersection of the plane generated by
the pre-activations of n; , and n;, with %; , = 0. Note that said intersection
always exists as both n; , and n;, are unstable; therefore, there is an input
for which their pre-activations equal zero. On the basis of the lower and upper

Title Suppressed Due to Excessive Length 7

Xi,r

Fig. 2. The types of intra-layer dependencies. Top-left: if n; , is active, then n; , is
inactive. Top-right: if n; 4 is inactive, then n;, is active. Bottom-left: if n;, is
active, then n; , is active. Bottom-right: If n;, is inactive, then n; , is inactive.

bounds of X; 4 r—0 and X; , 4—0, Which can be computed as standard using inter-
val arithmetic, the following lemma identifies the intra-layer dependencies (see
Figure 2).

Lemma 1. For a neural network f and a pair of unstable nodes (n; 4, n;), the
following hold:

D iff g0 < 0 and fyy4—0 < 0.
D" iff gm0 > 0 and 14— > 0.
Df " iff gm0 < 0 and 1, 4o > 0.
D iff ligr—0 > 0 and ;.4 < 0.

Mi,qy N, r
Ni,q> Ni,r

) €

) e
niq,nw)e

r) €

Lemma 1 gives a procedure for identifying intra-layer dependencies by com-
puting the right hand side of each of the above clauses for every pair of unstable
nodes in a layer. Dependencies between layers require a different treatment.

Consecutive-layer dependencies. A dependency (n; 4,7,) is said to be
an consecutive-layer dependency if j = i. To obtain a procedure for calculating
consecutive-layer dependencies we introduce the result below.

Lemma 2. For a neural network f and a pair of unstable nodes n; 4,n; ., for
j=1+1, the following hold:
1. (Migimjr) €DF T &l — (W) g g < 0.
2. ('fliyq, nj,r) S D;_’T = lj,r — (I/I/j)r,q g > 0.
3. Dt =0
4. DT =0

8 E. Botoeva et al.

Lemma 2 gives a procedure for identifying consecutive-layer dependencies by
checking the right hand side of clauses (1) and (2) for every pair of unstable
nodes in consecutive layers.

Dependency analyser. Given the above, we now put forward a procedure
using the identification of dependencies to reduce the configuration space. The
procedure runs in conjunction with a MILP solver, where it builds a new con-
straint for each dependency which it adds to the program being analysed by the
solver. This is performed at runtime during the branch-and-bound procedure,
as the computation of the dependencies is consistent with the current, partial
configuration of ReLU nodes being considered by the MILP solver. This allows
for the identification of dependencies whilst several nodes have already been
stabilised, as opposed to offline methods where most nodes would typically be
unstable, thereby hindering the existence of dependencies, as it is rarer for a
node to cause a state change on another.

Consider a partial configuration h being considered by the MILP solver. To
determine its validity, the solver either extends it to a complete one that satisfies
all constraints or to a partial one that violates at least one of the constraints.
The dependency analysis procedure put forward here reduces the number of
extensions of h that need to be evaluated. Algorithm 1 enumerates the steps
of the procedure. First, it stabilises the ReLLU nodes as per h and re-computes
the bounds for the ones being unstable under h. On the basis of the bounds, it
determines the dependencies as per Lemmas 2 and 1. These are then expressed
as constraints, referred to as dependency cuts, which are added at runtime to
the MILP program. The dependency cuts are defined as follows.

Definition 2 (Dependency cuts). For a partial configuration h: A — [0,1],

the associated dependency cut cutqy of a dependency d = (M4,q, Mj,r) € D;’Z/ is
a MILP constraint defined as follows:

cutgn = vjr(2) < Z J+ Z 1—0+7iq(2),
h(E)=0 h(6)=1

where 7; 4(2) equals ;4 if z=L and 1 —0;4 if 2 =TT.

A dependency cut derived from a configuration h is satisfied by an extension
of h iff the extended configuration satisfies the corresponding dependency; it fol-
lows that each dependency cut removes from the search space all configurations
extending h that do not satisfy the dependency. Additionally, for any configu-
ration that does not extend h, the cut is trivially satisfied, thereby not altering
the search space for those configurations. The former is shown by clause (1) and
the latter is proved by clause (2) of the following theorem.

Theorem 1. Let h be a partial configuration and d € DJZ‘-’Z/ a dependency. Then,
the following hold:

1. For every h' with h C K/, B |= cutqy, iff b = d.
2. For every W with h & I, I |= cutq,,.

Title Suppressed Due to Excessive Length 9

Algorithm 1 The dependency analysis procedure.
1: procedure DEPENDENCY ANALYSIS(milp, h)
2: Input: MILP milp, partial configuration h.
for each h(d;q) =0 do
Lig+0,u4+0

Compute remaining bounds (Section 2).
Compute D; (Lemmas 2 and 1).
Add {cutqn | d € D;} to milp (Definition 2)

Algorithm 2 The verification procedure.
1: procedure VERIFY(N, (Xo, X%))

2: Input: network N, specification (Xo, X%)
3: Output: YES/NO

4: sub-problems <« split(N, (Xo, X%))
5: result « YES

6: for P in sub-problems do

T milp < encode(P)

8: sub-result < milp_solver(milp)
9: if sub-result is feasible then
10: result <~ NO

11: break

12: return result

The above concludes the description of the dependency analysis procedure.
The procedure runs in time O(k - s?), where k is the number of layers and s is
the layers’ maximal size. Clearly running this procedure has a cost. In the next
section we will experimentally evaluate how frequent these calls should be. Also,
note that since our dependency framework is a function of the bounds of the
ReLU nodes, the procedure can further be optimised by using domain splitting
and symbolic interval propagation methods, since these lead to tighter intervals
for the ReLLU nodes.

In the next section we show that all these factors combined improve the
scalability of formal verification of neural networks over the state-of-the-art.

4 The Venus Verification Tool

In this section we introduce Venus [24], a verification toolkit that implements
the dependency analysis procedure and augments it with symbolic interval arith-
metic and domain splitting techniques. While methods on domain splitting di-
vide the input domain into sub-domains, thereby tightening the nodes’ bound
intervals, methods on symbolic interval arithmetic enable the efficient and tight
approximation of the latter; therefore, by Lemmas 1 and 2, both methods pro-
mote the existence of dependencies.

The verification procedure upon which Venus is based is outlined in Algo-
rithm 2. The procedure follows a divide-and-conquer approach whereby it re-

10 E. Botoeva et al.

Algorithm 3 The splitting procedure.

1: procedure sprLIT(P)
2: Input: verification problem P = (N, (Xo, X%))

3: Output: a set of verification sub-problems.
4: d+1 > Splitting depth
5: tosplit < [(d, Xo)]

6: sub-problems <+ ||

T while tosplit not empty do

8: d, R < pop top element of tosplit

9: R1, Ry < best_split(R)

10: if worth_split(R, R1, R2, d) then

11: add (d+ 1, R1), (d+ 1, R2) to tosplit
12: else

13: add (N, (R, X)) to sub-problems

14: return sub-problems

cursively splits the input domain until certain heuristic criteria are met and
solves the verification sub-problems associated with each sub-domain. Each sub-
problem is encoded as a MILP program. These can be analysed in parallel. A
MILP program is feasible iff the answer to its associated verification problem
is “no”. By the definition of the verification problem (Section 2), the answer
to the original problem is “no” iff there is at least one sub-problem whose an-
swer is “no”. So, as soon as one of the sub-problems is found to be feasible, the
procedure terminates without analysing the remaining MILP programs.

Venus uses the “big-M” encoding for the verification problems, and strength-
ens the linear relaxations by adding dependency cuts and “ideal cuts” [2] to
the MILP programs. The cuts are added at runtime through solver callbacks.
Although the cuts strengthen the relaxation, they add complexity to the sub-
problems within the solver. Therefore, the addition of a large number of cuts
can slow down the solver. Following this, cuts are only added in a fraction of all
solver callbacks.

Splitting procedure. The splitting procedure is outlined by Algorithm 3. The
procedure recursively splits the input domain by selecting at each step one of
the input dimensions and dividing its range in half.

The dimension is heuristically selected on the basis of what we call the
stability-ratio, the ratio of stable to total number of nodes for a given network
and input domain (Line 9). In particular, for each input dimension, we bisect the
input domain along the dimension, compute the stability-ratio for each of the
two resulting sub-domains and record the average stability-ratio. Then, the di-
mension along which to split is selected as the one that maximises the recorded
averages, or, equivalently, as the one that achieves (on average) the greatest
reduction of the configuration space of the induced sub-problems.

Clearly, the number of splits that need to be performed in order to obtain
(significantly) simpler sub-problems grows in the number of dimensions. As a
result, since the number of sub-problems grows exponentially in the number of

Title Suppressed Due to Excessive Length 11

input dimensions, the number of sub-problems that need to be considered grows
exponentially in the number of dimensions. So, whereas verification problems for
networks with low input dimensionality can effectively be divided into a number
of small sub-problems that are easier to solve, problems for networks with high
input dimensionality render such partitions intractable. As reported in the next
section, a key advantage of Venus over related tools lies in its ability to solve
both low and high input dimensionalities. While domain splitting is very effective
for low input dimensionalities, MILP solvers in conjunction with dependency
analysers are very powerful for high input dimensionalities. Venus combines the
two approaches by considering a heuristic criterion that terminates splitting and
signals the employment of an MILP solver (Line 10). The criterion expresses an
estimation of the difficulty of the verification problem before splitting versus its
difficulty after splitting.

The estimation of the difficulty of a problem p at splitting depth d that we
consider is defined by

score(p, d) = stability_ratio(p) d—istabz'lity,mtz'o (P) 7

where P is the original verification problem and m is the splitting parameter. The
larger the score the less difficult the verification problem is estimated to be. The
score rewards the improvement of the stability ratio with respect to the original
problem and penalises large splitting depths. The splitting parameter controls
the degree of “discount” to the splitting depth penalty, where higher values of m
signify larger discount. So, following the above discussion, in the case of problems
over networks with low input dimensionality, the splitting parameter should be
kept high so as to favour splitting. Differently, for problems over networks with
high input dimensionality, the splitting parameter should be kept low in order
to discourage splitting.

Given a problem p at splitting depth d, and the sub-problems p; and ps
resulting from splitting the chosen dimension of the input domain of p, the
splitting is carried out only if the score of (p,d) is less than the average of
the scores of (p1,d + 1) and (pa,d + 1). In cases where excessive splitting is
still observed, a cut-off stability-ratio is used above which the splitting process
terminates independently of the aforementioned scores.

Implementation. The architecture of Venus is shown in Figure 3. The toolkit
comprises the following components: (i) the Splitter performing domain splitting
and adding the derived sub-problems to the jobs queue; and (ii) the Worker
reading sub-problems from the jobs queue, solving them by calling an MILP-
solver and dependency analyser ensemble, and recording the verification results
to the results queue. Venus aggregates the results from the workers and reports
the combined verification result as per Algorithm 2. Both the Splitter and Worker
follow a parallelisation scheme whereby several splitters and workers carry out
the domain splitting and the MILP analysis in parallel. Venus is implemented in
Python 3.7 and relies on Gurobi 8.1 for the MILP backend.

12 E. Botoeva et al.

1) c

= o
. [} I = p .
input Splitter ‘ S Worker .!_ ® _verification
problem 2 results go result

s J

MILP encoding answer

Dependency <- - - -VIINY
analyser - - - IS

Fig. 3. The architecture of Venus.

MNIST (100 queries) CIFAR-10 (100 queries) ACAS XU (172 queries)

ns tal tsolved QVs % ns tan tsolved AVs % ns tan tsolved QUs f,g,’,lus
tall tall tall
Venus 100 5953 573 9 — | 100 857 560 7 — | 170 19643 5,528 36 -
Marabou 0 86400 14 0 86400 101 | 156 140916 75,747 498 7
Neurify 65 126007 7 0 21|76 87178 778 10 102|167 23628 2555 17 1
NSVerify 95 26907 2515 40 5 |100 6899 3460 46 & 6 86400 — — 31

Table 1. Experimental results obtained when running Venus, Marabou, Neurify and
NSVerify.

5 Experimental Results and Evaluation

In this section we evaluate Venus on a number of widely used benchmarks and
compare it against the state-of-the-art neural-network verification engines.

For the comparisons we restrict our attention to complete methods; while
these are often less scalable than incomplete ones, they provide full guarantees
on the correctness of their outputs, which is a key objective here. At present,
the leading complete verification tools are Marabou [14] and Neurify [25]. To
assess the improvement of Venus over plain MILP-based verification, we addi-
tionally compare Venus against NSVerify [1]. We used the most commonly used
benchmarks in the context of FFNNs verification:

— ACAS Xu [11] comprises 45 ReLU-based FFNNs, which were developed as
part of an airborne collision avoidance system to advise horizontal steering
decisions for unmanned aircrafts. We considered the specifications reported
in [13]. Each was tested on all 45 networks, thereby giving rise (for a total
of 10 specifications) to 172 verification problems. For the experiments, Venus
was run with 2 splitters, 4 workers, the stability-ratio cutoff set to 0.7, the
depth discount set to 20 and with the dependency analyser turned off; Neu-
rify was run with MAX_THREAD set to 2; Marabou was run with the parameters
reported in [14].

— MNIST [17] is a dataset comprising images of hand-written digits 0-9, each
formatted as a 28x28x1-pixel grayscale image. We used MNIST to train a

Title Suppressed Due to Excessive Length 13

FFNN with 2 hidden layers, each layer comprising 512 neurons. The pre-
diction accuracy of the network is 97%. We verified the network against
local robustness for a perturbation radius of 0.05 on 100 randomly selected
images. For the experiments, we ran Venus with 2 splitters, 2 workers, the
stability-ratio set to 0.4, the depth discount set to 4, and the dependency
analyser turned on; Neurify was run with MAX_THREAD set to 1; Marabou was
run with the parameters reported in [14].

— CIFAR-10 [16] is a dataset comprising images of objects from 10 differ-
ent classes (airplanes, cars, birds, cats, etc.). Each image is formatted as
a 32x32x3-pixel colour image. We used CIFAR-10 to train a FFNN with 3
hidden layers, the first layer comprising 1024 neurons, and the second and
third layers comprising 512 neurons. The prediction accuracy of the network
is 45%. We verified the network against local robustness for a perturbation
radius of 0.01 on 100 randomly selected images. We ran all tools with the
same parameters as for MNIST.

All experiments were carried out on an Intel Core i7-7700K (4 cores) equipped
with 16GB RAM, running Ubuntu 18.04. Each verification query had a local
timeout of 1 hour. The sum of verification queries associated with each bench-
mark had a global timeout of 24 hours. Table 1 reports the experimental results.
For each of the tools and benchmarks, the table gives the number ng of verifi-
cation queries that were solved, the overall time t,;; taken for all queries, the
overall time ,,5,cq and the average time av, taken for the queries that three best
performing tools were able to solve, and the ratio between overall time taken ¢,
by a tool over that of Venus, tVenus.

The results obtained on MNIST show that Venus was the most performing
of the toolkits, both in terms of the overall verification time and the number
of verification queries solved. Neurify was not able to analyse 35 of the queries
because of excessive memory consumption. For these cases, we considered Neu-
rify as having timed out. Marabou did not solve any of the queries under local
and global timeouts. NSVerify performed better than both Neurify and Marabou.
Venus was found 4.52 times faster than NSVerify and 21 times faster than Neu-
rify. For CIFAR-10 the difference between Venus and the other tools was greater,
suggesting that the higher the dimensionality and complexity of the model, the
bigger the difference.

Venus’s performance was also found superior on ACAS XU, both in terms of
the overall verification time and the number of queries solved. Neurify was the
fastest tool w.r.t. the number of queries that all the tools could solve. Marabou
solved a comparable number of queries to Venus and Neurify but was slower
than both of them. NSVerify solved only 6 queries within the local and global
timeouts.

Figure 4 gives a graphical representation of the total number of verification
queries that each tool could verify as a function of time. In summary, Venus
solved most verification instances after approx. 15 secs. Also, to the best of
our knowledge, Venus is the only tool that can seemingly analyse both low-

14 E. Botoeva et al.

Ablation test | ns avs tau tsolved

Big-M formulation | 98 38.15 13,555.49 3,700.62

Splitting | 98 42.58 11,409.96 4,129.83

Ideal formulation | 100 36.02 6,777.95 3,460.17

Splitting+Ideal | 100 36.75 8,277.85 3,565.02

Consecutive Deps| 99 30.06 8,561.21 2,916.23

Intra Deps| 98 33.03 10,426.82 3,203.54

Consecutive+Intra Deps| 98 25.81 9,729.07 2,503.41

All methods enabled | 100 26.52 5,953.46 2,572.90
Table 2. Ablation experiments for MNIST. The average is calculated for the images
that are verified in all cases. Similarly, tsoiveq is calculated for the images verified in

all cases.

dimensional and high-dimensional networks, outperforming the state-of-the-art
tools for each class, often by more than one order of magnitude. The only aspect
we found Venus to be less performing was counterexample generation where
Neurify was the fastest tool.

The experiments also suggest that the verification of networks with low input-
dimensionality is particularly amenable to domain splitting, as domain splitting
techniques act as effective configuration-space minimisers. As a result, branch-
and-bound methods that combine domain splitting are advantageous over ones
that do not, as indicated by the outperformance of Venus over NSVerify on ACAS.

Differently, for high-dimensional input domains, the experiments suggest that
domain splitting methods do not significantly reduce the configuration space, as
indicated by the degraded performance of Neurify and Marabou on MNIST and
CIFAR-10. In contrast, techniques that directly target the reduction of the con-
figuration space exhibit high efficacy over high-dimensional inputs, as exempli-
fied by Venus and NSVerify. Venus is more effective than NSVerify by considering
FFNN-specific configuration-space reductions. This suggests that MILP solvers
are not necessarily best used as black boxes, but application-specific considera-
tions can help to improve their effectiveness.

Indeed, the performance gains exhibited by Venus over NSVerify on MNIST
and CIFAR-10 are a consequence of combining dependency analysis and ideal
formulations. This is evidenced by separately evaluating Venus on MNIST for
different combinations of the techniques that the tool implements. Table 2 re-
ports ablation experiments to analyse this in detail. The results confirm that
domain splitting is not effective for high dimensional inputs. They also show that
ideal formulations and dependency analysis improve on pure big-M formulations
not only when they are jointly utilised but also when they are independently
employed. In the latter case, ideal formulations enabled the verification of two
images that could not be verified by dependency analysis, whereas dependency
analysis led to better average and total time for verifying all images that could
be verified in all cases. In the latter case the results suggest that the combina-

Title Suppressed Due to Excessive Length 15

370

e
 Venus H/_,_,_)-'—v—-

—— Neurify
300 - Marabou

7;4-
200/

/-/

) -

0 et =TT Lol Lol

100 10t 102 103
Run time (s)

Number of verication queries solved

N
\
\

Fig. 4. Number of verification queries that Venus, Neurify, Marabou and NSVerify could
solve as a function of time.

30 g

i . e®®00c000000e flUOE

8,000 |- o Non-robust i

Robust &

g 20 4 s Timeout I

g @ 2

Z E [

> 5 B

= ® 4,000 - S
D o

3 [5

< 10 R]

e}

[

s

ol e XX XA X XXX XXX 40 X

0 I | | 1 L - E

2001 5000~ 10000~ 0 0.05 0.1 0.15 0.2 =

Frequency Radius

Fig. 5. Left: Average runtime of Venus on MNIST as a function of callback frequency.
Right:Total runtime of Venus on MNIST as a function of perturbation radius.

tion of dependency analysis and ideal formulations is preferable in terms of all
performance metrics than either technique considered in isolation.

As discussed in Section 3, running the dependency analysis procedure has
a cost. As a result, the above performance gains can only be obtained after
determining how often these calls should be. The left part of Figure 5 gives the
average runtime of Venus on 100 MNIST images as a function of the frequency
with which the dependency analysis procedure is called from a Gurobi callback.
High and low frequencies degrade the performance of Venus, whereas frequencies
in the range [0.00014 — 0.00025] balance out the cost of computing dependencies
and the reduction of the configuration space enabled by their computation.

We conclude this section by studying the performance of Venus as a function
of the perturbation radius for which the robustness of MNIST is established.
Intuitively, small perturbation radiuses pertain to easy verification problems on

16 E. Botoeva et al.

the one hand, as the bounds for the nodes are tighter, and to hard problems
on the other hand, as the network is more likely to be robust w.r.t. the cor-
responding perturbed images. Similarly, large perturbation radiuses pertain to
hard verification problems on the one hand, as the bounds for the nodes are
looser, and to easy problems on the other hand, as the network is less likely to
be robust w.r.t. the corresponding perturbed images. The right part of Figure 5
reports Venus’s total running time for verifying 100 MNIST images and for per-
turbation radiuses that range from 0.01 to 0.2. The figure also shows the number
of images for which Venus has timed out and for which the network was found
non-robust and robust. The figure shows that Venus is consistently efficient for
all perturbation radiuses (with an average verification time per image of less
than 90 seconds). The figure also indicates that the performance of Venus is
mostly degraded for perturbation radiuses within the range [0.05,0.07]. Notably,
these radiuses result in verification problems that do not permit for sufficiently
tight bounds for the nodes whilst not exhibiting sufficiently adversarial regions.

6 Conclusions

As we argued in the introduction, the deployment of learning methods based
on neural networks in safety critical Al applications urgently requires verifica-
tion and validation methods. A growing area of research is concerned with the
development of formal verification methods for neural networks with particu-
lar emphasis to ReLU-based deep networks used in vision and control. While
progress in this area has been rapid, the present state-of-the-art still falls short
of the capabilities required to verify industry-strength models. It is unlikely that
this scalability issue will be solved in the immediate future; but there is a need
for novel methods to gradually conquer larger and larger networks.

In this paper we introduced the concept of dependency analysis which we
developed in the context of a MILP-based verification method. The method fur-
ther benefits from input splitting and symbolic interval propagation. We derived
algorithms based on the resulting theory and reported the results obtained with
Venus, a novel tool for the verification of neural networks. As we demonstrated
experimentally on three different, widely used benchmarks, Venus could solve
more verification queries than the present state-of-the art tool based on com-
plete methods. Venus is also the fastest tool to verify the correctness of a network;
in some cases Neurify proved to be faster in finding counterexamples.

In future work we intend to apply Venus to the verification of more complex
specifications for neural networks including transformational robustness [15].
Also we intend to analyse alternative methods for the calculation of the bounds,
such as those employed by ERAN [22] and CROWN [27], in the context of de-
pendency analysis and study the extend to which the methods can be used to
improve the performance of Venus.

Acknowledgements. This research was partly funded by DARPA under the
Assured Autonomy program, the Royal Academy of Engineering (via a Chair

Title Suppressed Due to Excessive Length 17

in Emerging Technologies), the Royal Society (NIF\R1\182194), and ESPRC
(grant EP/P016871/1).

References

1.

10.

11.

12.

13.

M. E. Akintunde, A. Lomuscio, L. Maganti, and E. Pirovano. Reachability analysis
for neural agent-environment systems. In Proceedings of the 16th International
Conference on Principles of Knowledge Representation and Reasoning (KR18),
pages 184-193. AAAI Press, 2018.

. R. Anderson, J. Huchette, C. Tjandraatmadja, and J.P. Vielma. Strong mixed-

integer programming formulations for trained neural networks. In Integer Pro-
gramming and Combinatorial Optimization (IPCO19), Lecture Notes in Computer
Science, pages 27-42. Springer, 2019.

O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. V. Nori, and A. Crim-
inisi. Measuring neural net robustness with constraints. In Proceedings of the 30th
International Conference on Neural Information Processing Systems (NIPS16),
pages 2613-2621, 2016.

R. .R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. K. Mudigonda. A unified view
of piecewise linear neural network verification. In Proceedings of the 31st Annual
Conference on Neural Information Processing Systems (NeurIPS18), pages 4790—
4799. Curran Associates, Inc., 2018.

C.-H. Cheng, G. Niithrenberg, and H. Ruess. Maximum resilience of artificial neural
networks. In Automated Technology for Verification and Analysis, pages 251-268.
Springer International Publishing, 2017.

K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli. A dual approach to
scalable verification of deep networks. In Proceedings of the 34th Annual Conference
on Uncertainty in Artificial Intelligence (UAI18), pages 162-171. AUAI Press,
2018.

R. Ehlers. Formal verification of piece-wise linear feed-forward neural networks.
In Proceedings of the 15th International Symposium on Automated Technology for
Verification and Analysis (ATVA17), volume 10482 of Lecture Notes in Computer
Science, pages 269-286. Springer, 2017.

M. Fazlyab, M. Morari, and G. J. Pappas. Safety verification and robustness anal-
ysis of neural networks via quadratic constraints and semidefinite programming.
arXiv preprint arXiw:1903.01287, 2019.

M. Fischetti and J. Jo. Deep neural networks and mixed integer linear optimization.
Constraints, pages 1-14, 2018.

T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vechev. AI?: Safety and robustness certification of neural networks with ab-
stract interpretation. In Proceedings of the 39th IEEE Symposium on Security and
Privacy (S&P18), pages 948-963, 2018.

K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer. Policy compression
for aircraft collision avoidance systems. In Proceedings of the 35th Digital Avionics
Systems Conference (DASC16), pages 1-10, 2016.

N. Karmarkar. A new polynomial-time algorithm for linear programming. In Pro-
ceedings of the 16th Annual ACM Symposium on Theory of Computing (STOCS84),
pages 302-311. ACM, 1984.

G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex:
An efficient SMT solver for verifying deep neural networks. In Proceedings of the

18

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

E. Botoeva et al.

29th International Conference on Computer Aided Verification (CAV17), volume
10426 of Lecture Notes in Computer Science, pages 97-117. Springer, 2017.

G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljic, D. L. Dill, M. J. Kochenderfer, and C. W. Barrett.
The marabou framework for verification and analysis of deep neural networks. In
Proceedings of the 31st International Conference on Computer Aided Verification
(CAV19), pages 443-452, 2019.

P. Kouvaros and A. Lomuscio. Formal verification of cnn-based perception systems.
arXiv preprint arXiw:1811.11373, 2018.

A. Krizhevsky, V. Nair, and G. Hinton. The CIFAR-10 dataset.
http://www.cs.toronto.edu/kriz/cifar.html, 2014.

Y. LeCun, C. Cortes, and C. J. Burges. The MNIST database of handwritten
digits, 1998.

C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. Kochenderfer. Algorithms for
verifying deep neural networks. CoRR, abs/1903.06758, 2019.

A. Lomuscio and L. Maganti. An approach to reachability analysis for feed-forward
relu neural networks. CoRR, abs/1706.07351, 2017.

A. Raghunathan, J. Steinhardt, and P. S. Liang. Semidefinite relaxations for certi-
fying robustness to adversarial examples. In Proceedings of 81st Annual Conference
on Neural Information Processing Systems (NeurIPS18), pages 10900-10910, 2018.
V. Rubies-Royo, R. Calandra, D. M. Stipanovic, and C. Tomlin. Fast neural net-
work verification via shadow prices. In Proceedings of the 36th International Con-
ference on Machine Learning (ICML19), 2019.

G. Singh, T. Gehr, M. Piischel, and P. Vechev. An abstract domain for cer-
tifying neural networks. Proceedings of the ACM on Programming Languages,
3(POPL):41, 2019.

V. Tjeng, K. Y. Xiao, and R. Tedrake. Evaluating robustness of neural networks
with mixed integer programming. In Proceedings of the 7th International Confer-
ence on Learning Representations (ICLR19), 2019.

Venus. https://vas.doc.ic.ac.uk/software/neural, 2019.

S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Efficient formal safety
analysis of neural networks. In Proceedings of the 31st Annual Conference on
Neural Information Processing Systems 2018 (NeurIPS18), pages 6369-6379, 2018.
S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal security analysis
of neural networks using symbolic intervals. In Proceedings of the 27th USENIX
Security Symposium, (USENIX18), pages 1599-1614, 2018.

H. Zhang, T. Weng, P. Chen, C. Hsieh, and L. Daniel. Efficient neural net-
work robustness certification with general activation functions. In Proceedings
of the 31st Annual Conference on Neural Information Processing Systems 2018
(NeurIPS52018), pages 4944-4953. Curran Associates, Inc., 2018.

Robustness Verification for Ensemble Stumps and Trees

Hongge Chen?*, Yihan Wang3*, Huan Zhang'*, Si Si*, Yang Li*, Duane Boning?, and
Cho-Jui Hsieh!

1 University of California, Los Angeles, USA
2 Massachusetts Institute of Technology, Massachusetts, USA
3 Tsinghua University, China
4 Google Research, USA
* Equaly contributed, ranked by alphabetical order

Abstract. We study the robustness verification problem for ensemble decision
stumps and trees, including random forest, gradient boosting trees, and Adaboost.
Although these models are widely used in practice, there is very limited under-
standing on how to formally verify the robustness of those models. In this study, we
aim to give a comprehensive complexity analysis as well as provide efficient verifi-
cation algorithms. For ensemble decision stumps, we show that exact robustness
verification with L, norm ball is NP-complete for p € (0, c0), while polynomial
time algorithms exist for p = 0 and p = co. Approximation algorithms based
on dynamic programming are then developed for verifying ensemble stumps for
p € (0, o0). For ensemble decision trees, it has been proved that exact robustness
verification is NP-complete, and the existing verification approach is based on
MILP, which does not scale to large-scale problems. We show that ensemble tree
verification can be cast as a max-clique problem on a multi-partite graph with
bounded boxicity, and by exploiting the boxicity of the graph, we develop an
efficient multi-level verification algorithm that can give tight lower bounds on
robustness of ensemble decision trees, while allowing iterative improvement and
any-time termination.

1 Introduction

Machine learning verification aims to develop methods to bound the behavior of a model
within a given input set, and they have become fundamental tools for verifying robustness
and safety properties of given models. In this paper, we study the robustness verification
problem of ensemble decision stumps and trees, which covers several important machine
learning models such as AdaBoost, Random Forests (RFs) and Gradient Boosted Decision
Trees GBDTs). These models have been widely used in practice [[7, 112} 22] and recent
studies have demonstrated that they are vulnerable to adversarial perturbations [10 |8 6],
but there is limited understanding on how to efficiently verify them.

We focus on the robustness verification problem, which can be defined as finding
the minimum adversarial perturbation within a given input region (usually an £, norm
ball). [10] showed that computing minimum adversarial perturbation for tree ensemble
is NP-complete in general, and they proposed a Mixed-Integer Linear Programming
(MILP) based approach to compute the minimum adversarial perturbation. Although
exact verification is NP-hard for general tree ensemble, in order to have an efficient
verification algorithm for real applications we seek to answer the following questions:

2 Chen et al.

— Do we have polynomial time algorithms for exact verification under some special
circumstances?

— For general tree ensemble models with a large number of trees, can we efficiently
compute meaningful lower bounds on robustness while scaling to large tree ensem-
bles?

In this paper, we provide the answers to the above-mentioned questions. Our contributions
can be summarized below:

— Robustness Verification for Ensemble Decision Stumps: For an ensemble of
decision stumps (trees with depth 1), we show that there is a fundamental different
between the complexity of verifying £, norm ball with different p. When p € (0, o),
we prove that £, norm verification problem is NP-complete while polynomial time
algorithms exist for p = 0, co. However, we are able to propose an efficient dynamic
programming algorithm that can compute a reasonably tight verification bound
efficiently for general p.

— Robustness Verification for Ensemble Decision Trees: we show that for a single
decision tree, robustness verification can be done exactly in linear time. Then we
show that for an ensemble of K trees, the verification problem is equivalent to
finding the maximum cliques in a K-partite graph, and the graph is in a special form
with boxicity equal to the input feature dimension. Therefore, for low-dimensional
problems, verification can be done in polynomial time with maximum clique
searching algorithms. Finally, for large-scale tree ensembles, we propose a multiscale
verification algorithm by exploiting the boxicity of the graph, which can give tight
lower bounds on robustness.

2 Background and Related Work

Assume F : RY — {1,...,C}isaC-way classification model, given a correctly classified
example o with F(z() = yo, an adversarial perturbation is defined as § € R? such that
F(xo+9) # yo-

Definition 1 (Robustness Verification Problem). Given F,xo and a perturbation
radius €, the robustness verification problem aims to determine whether there exists an
adversarial example within € ball around x. In the other word, determine whether the
following statement is true:

30 s.t. ||0]l, < € and F(x + d) # yo. (1)

Exactly solving (T) is usually hard, especially for deep neural networks [11} 20].
Adversarial attack algorithms are developed to find an adverarial perturbation ¢ that
satisfies (I). For example, several widely used attacks have been developed for attacking
neural networks [4,113}(9]. However, adversarial attacks can only find adversarial examples
which do not provide a sound safety guarantee — even if an attack fails to find an
adversarial example, it does not imply no adversarial example exists. Therefore, recent
researches have been studied the sound solution to (T)) and using them to evaluate safety
of a model, leading to the recent developments of robustness verification.

Robustness Verification for Ensemble Stumps and Trees 3

Robustness verification aims to provide a sound answer to (I)), which means a valid
verification algorithm should answer no to (1)) only when the existence of adversarial
example can be disapproved. A tighter verification algorithm will be able to disaprove
(I for a larger € than looser algorithms. For neural network, it has been shown that
solving (I) exactly is NP-complete (for ReLU networks), and thus many recent works
have been focusing on developing an efficient and reasonable tight robustness verification
algorithm for neural networks [21, 23} 20} 117, [19, [18]. Most of them are following the
linear relaxation based approach, where they find linear upper and lower bounds of
output neurons with respect to input neurons and then try to answer (I)) based on these.
However, all of these algorithms are specifically designed for neural networks and cannot
be extended to ensemble trees.

Robustness verification for tree ensembles Since ensemble trees are discrete step
functions, none of the neural network verification algorithms can be applied. Specialized
algorithms is required for verifying tree ensembles. Robustness evaluation and verification
is first studied in [10]], where they showed that ensemble tree verification is NP-complete
when there are multiple trees with depth > 2. An integer programming method was
proposed to compute in exponential time. Later on in [2], a single deicion tree is
verified for evaluating robustness of an RL policy. A recent work [1]] provides a certified
defense algorithm for training tree ensembles against £, perturbation, and their algorithm
implicitedly use the fact the £, robustness verification for ensemble stumps can be
computed efficiently.

3 Robustness Verification for Ensemble Decision Trees and Stumps

3.1 Verification for a single decision tree

We first consider the simplified case with a single decision tree. Assume the decision tree
has n nodes and for a given example x with d features, starting from the root, x traverses
the decision tree model until reaching a leaf node. Each internal node i determines
whether & will be passed to left or right child by checking I(x;, > 1;), and each leaf node
has a value v; indicating the prediction value of the tree.

If we define B as the set of & € X that can reach node i, due to the decision tree
structure, B! can be represented as a d-dimensional box:

B = (I, ri] x - x (15, rh]. 2)

The box can be computed efficiently in linear time by traversing the tree. The detailed
algorithm can be found in Appendix [A]

We aim to certify whether there exists any misclassified points under perturbation
I6]l, < e. We can enumerate boxes for all the leaf nodes and check the minimum
distance from @ to each box. The following proposition shows that the £,, norm distance
between a point and a box can be computed in O(d) time, and thus the exact robustness
verification problem for a single tree can be solved in O (dn) time.

4 Chen et al.

Proposition 1. Given a box B = (I1,r1] X---X (lg,rq] and a point x € R4, The closest
¢, distance from x to B is ||z — x||, where:

Xiy i <x; <u
zi =\l xi <l €))
u;, X;>Uu;.

3.2 Ensemble Decision Stumps

We assume there are 7' decision stumps and the i-th decision stump gives the prediction

£ = {Wf if xi, <7’

; i
whoifx, > 7'

The prediction of decision stump ensemble F(x) = 3; f*(x) can be decomposed into
each feature in the following way. For each feature j, assume ji, ..., jr; are the decision

stumps using feature j, we can collect all the thresholds [p/t,...,n’%]. Without loss of
generality, assume 7/! < --- < /% then the prediction values assigned in each interval
can be denoted as

gj (x].) =yt if njr < X < n/m (4)
where .

. : : : JT;
V= wll Wl +otw,

The overall prediction can be written as summation over the predicted values of each
feature:

d
F(x)= > g/ (x)), (5)
j=1
and the final prediction is given by y = sgn(F(x)).

{ ensemble stump verification Due to the separability of (3)), the £, norm perturbation
can be done easily in linear time. For each feature j, we just need to check the worst-case
perturbation within the range (x; — €, x; + €) and this can be done by a linear scan through
the thresholds nj I,...,n’% . Therefore the verification can be done in polynomial time.
This algorithm is implicitly mentioned in [1]] for conducting ¢, certiied defense for tree
ensembles.

£y ensemble stump verification Assume F(x) is positive and we want to make it the
most negative by perturbing ¢ features (in this case, ¢ should be an integer). For each
feature j, we want to know the maximum decrease of prediction value by changing this
feature, which can be computed as

¢l = mtin vt — gl (x)), (6)

Robustness Verification for Ensemble Stumps and Trees 5

and we should choose ¢ features with smallest ¢/ values to perturb. Let S5 denotes the
set with ¢ smallest ¢/ values, we have

min F(x')=F(x)+ Z cl. @)

lle=x'lo <K 5
Therefore verification can be done exactly in O (T + d) time.

¢, ensemble stump verification The difficulty of £, norm robustness verification is
that the perturbations on each feature are correlated, so we can’t separate all the features.
In the following, we prove that the exact £, norm verification is NP-complete by showing
a reduction from Knapsack to £, norm ensemble stump verification. This shows that
¢, norm verification can belong to a different complexity class compared with the £e
norm case. The proof can be found in Appendix[B] where we make a connection between
ensemble stump verification and Knapsack problem.

Theorem 1. Exact €, norm robustness verification (solving eq (1)) for an ensemble
decision stump is NP-complete when p € (0,).

Although it is impossible to solve £, verification for decision stumps in polynomial
time, we show an upper bound of this can be solved in polynomial time by dynamic
programming, inspired by the pseudo-polynomial time algorithm for Knapsack.

Let r]f L., n”f be the thresholds for feature j and Vit .. v/7i bethe corresponding
values, our dynamic programming maintains the following value for each e: “given
maximal € perturbation to the first j features, what’s the minimal prediction of the
perturbed x”. We denote this value as D (e, j), then the following recursion holds:

D(e,j+1) = 6;1[101n6] D(e-6,j)+C(5,j+1),

where C(6,j +1) := min|x}_xj <58’ (x;.) which can be precomputed. Note that d, € can
be real numbers so exactly running this DP requires exponential time. Our approximate
algorithm allows €, § only up to certain precision. If we choose precision v, then we only
consider values v, 2v, ..., Pv (the smallest P with Py > €). To ensure the verification
algorithm is sound, the recursion will become

D(av,j+1)= min D((a—b+1)v,j)+C(bv,j+1), ®)
be{l,..., a}
and the final solution should be D([€], d) where [€] := Tv means rounding € up to the
closest grid. Note that the +1 term in the recursion is to ensure that the resulting value is
a lower bound of the original solution. The verification algorithm can verify N samples
in O(N(Pd +T)) time, in which d is dimension and P is the number of discretizations.

3.3 Ensemble Decision Trees: Connection to max clique finding

Now we discuss robustness verification for tree ensembles. Assuming the tree ensemble
has K decision trees, we use S¥) to denote the set of leaf nodes of tree k and m¥) (x) to
denote the function that maps the input example x to the leaf node of tree k according to

6 Chen et al.

its traversal rule. Given an input example x, the tree ensemble will pass x to each of these
K trees independently and x reaches K leaf nodes i*®) = m® (x) forall k = 1,..., K.
Each leaf node will assign a prediction value v;«) . For simplicity we consider the binary
classification problem where the original sample is classified as negative and the goal is
to find whether there exists an input in the e-ball that will be classified as positive . We
will first consider the £, ball verification problem (input region is an e-radius ¢, ball
around x).

We start by defining some notation: let C = {(i(D, ... i) | (K e §() vk =
1,..., L} tobeall the possible tuples of leaf nodes and let C(x) = [m) (x),...,mE) (x)]
be the function that maps x to the corresponding leaf nodes. Therefore, a tuple C € C
directly determines the model prediction }} vc 1= > ; v;«) . Now we define a valid tuple
for robustness verification:

Definition 2. A ruple C = (iV,...,i'"8)) is valid if and only if there exists an x’ €
Ball(x, €) such that C = C(x’).

The robustness verification (I) can then be written as:
Does there exist a valid tuple C such that Z ve > 0?2

Next, we show how to model the set of valid tuples. We have two observations. First, if a
tuple contains any node i with inf /. gi {||x — x"||} > €, then it will be invalid. Second,

there exists an x such that C = C(x) if and only if B’ n---n B # 0, or equivalently:

i i(K)

@ 20 vi= 1

We show that the set of valid tuples can be represented as cliques in a graph G = (V, E),
where V := {i|B' N Ball(x, €) # 0} and E := {(i, j)|B' N B/ # 0}. In this graph, nodes
are the leaves of all trees and we remove every leaf that has empty intersection with
Ball(x, €). There is an edge (i, j) between node i and j if and only if their boxes intersect.
The graph will then be a K-partite graph since there cannot be any edge between nodes
from the same tree, and thus maximum cliques in this graph will have K nodes. We define
each part of the K-partite graph as V. Here a “part” means a disjoint and independent
set in the K-partite graph. The following lemma shows that intersections of boxes have
very nice properties:

Lemma 1. For boxes B',...,BX, if BENB/ # 0 foralli,j € [K], let B=B' nB>nN
-+ N BK be their intersection. Then B will also be a box and B # 0.

The proof can be found in the Appendix [C] Based on the above lemma, each K-clique
(fully connected subgraph with K nodes) in G can be viewed as a set of leaf nodes that
has nonempty intersection with each other and also has nonempty intersection with
Ball(x, €), so the intersection of those K boxes and Ball(x, €) will be a nonempty box,
which implies each K-clique corresponds to a valid tuple of leaf nodes:

Lemma 2. A muple C = iV, ..., i"8)) is valid if and only if nodes iV, . .. ,i'%) form a
K-clique (maximum clique) in graph G constructed above.

Robustness Verification for Ensemble Stumps and Trees 7

Therefore the robustness verification problem can be formulated as

Is there a maximum clique C in G such that Z ve > 0?7)

This reformulation indicates that the tree ensemble verification problem can be solved by
an efficient maximum clique enumeration algorithm. Some standard maximum clique
searching algorithms can thus be applied here to perform verification:

- Finding K-cliques in K-partite graphs: Any algorithm for finding all the maximum
cliques in G can be used. The classic B-K backtracking algorithm [3] takes O (3%) time
to find all the maximum cliques where m is the number of nodes in G. Furthermore,
since our graph is a K-partite graph, we can apply some specialized algorithms
designed for finding all the K-cliques in K-partite graphs [14, 15} [16]].

— Polynomial time algorithms exist for low-dimensional problems: Another impor-
tant property for graph G is that each node in G is a d-dimensional box and each edge
indicates the intersection of two boxes. This implies our graph G is with “boxicity
d” (see [5] for detail). [5] proved that the number of maximum cliques will only
be O((2m)?) and it is able to find the maximum weight clique in O((2m)?) time.
Therefore, for problems with a very small d, the time complexity for verification is
actually polynomial.

3.4 An Efficient and Sound Verification Algorithm for Tree Ensemble

Practical tree ensembles usually have tens or hundreds of trees with large feature
dimensions, so exact clique findings will take exponential time and will be too slow.
We thus develop an efficient multi-level algorithm for computing verification bounds by
further exploiting the boxicity of the graph.

Figure|l|illustrates the graph and how our multilevel algorithm runs. There are four
trees and each tree has four leaf nodes. A node is colored if it has nonempty intersection
with Ball(x, €); uncolored nodes are discarded. To answer question @I), we need to
compute the maximum) v¢ among all K-cliques, denoted by v*. As mentioned before,
for robustness verification we only need to compute an upper bound of v* in order to
get a lower bound of minimal adversarial perturbation. In the following, we will first
discuss algorithms for computing an upper bound at the top level, and then show how our
multi-scale algorithm iteratively refines this bound until reaching the exact solution v*.

Bounds for a single level. To compute an upper bound of v*, a naive approach is to
assume that the graph is fully connected between independent sets (fully connected
K-partite graph) and in this case the maximum sum of node values is the sum of the
maximum value of each independent set:

4 .
Zk_l maxjey, Vi 2 V. (10)
Here we abuse the notation v; by assuming that each node i in Vi has been assigned a
“pseudo prediction value”, which will be used in the multi-level setting. In the simplest
case, each independent set represents a single tree, Vi = S*) and v; is the prediction of
a leaf. One can easily show this is an upper bound of v* since any K-clique in the graph

8 Chen et al.

Tree (1) Tree (2) Tree (3) Tree (4)

——————— - ———— == -——==
Leafnodes:

Run single-level algorithm

to get level 1 bound
Merge (1) and (2) @ Merge (3) and (4) @

Merge (1) (2) and (3) (4)

Fig. 1: The proposed multi-level verification algorithm. Lines between leaf node i on tree
t1 and leaf node j on #, indicate that their ., feature boxes intersect (i.e., there exists an
input such that tree 1 predicts v; and tree 2 predicts v ;).

Final (exact) solution

is still considered when we add more edges to the graph, and eventually it becomes a
fully connected K-partite graph.

Another slightly better approach is to exploit the edge information but only between
tree ¢ and 7 + 1. If we search over all the length-K paths [i m K)] from the first
to the last part and define the value of a path to be X, v;«), then the maximum valued
path will be a upper bound of v*. This can be computed in linear time using dynamic
programming. We scan nodes from tree 1 to tree K, and for each node we store a value
d; which is the maximum value of paths from tree 1 to this node. At tree k and node 7,
the d; value can be computed by

di=vi+ d;. (11)

max i
Jj:j€Vior and (j,i)€E
Then we take the max d value in the last tree. It produces an upper bound of v*, since the
maximum valued path found by dynamic programming is not necessarily a K-clique.
Again Vi_; = S in the first level but it will be generalized below.

Merging T independent sets To refine the relatively loose single-level bound, we partition
the graph into K /T subgraphs, each with 7' independent sets. Within each subgraph, we
find all the T-cliques and use a new “pseudo node” to represent each T-clique. T-cliques
in a subgraph can be enumerated efficiently if we choose T to be a relatively small
number (e.g., 2 or 3 in the experiments).

Now we exploit the boxicity property to form a new graph among these 7-cliques
(illustrated as the second level nodes in Figure [T). By Lemma [I] we know that the
intersection of 7' boxes will still be a box, so each T-clique is still a box and can be
represented as a pseudo node in the level-2 graph. Also because each pseudo node is
still a box, we can easily form edges between pseudo nodes to indicate the nonempty
overlapping between them and this will be a (K /T)-partite boxicity graph since no edge
can be formed for the cliques within the same subgraph. Thus we get the level-2 graph.
With the level-2 graph, we can again run the single level algorithm to compute a upper
bound on v* to get a lower bound of r* in (T)), but different from the level-1 graph, now
we already considered all the within-subgraph edges so the bounds we get will be tighter.

Robustness Verification for Ensemble Stumps and Trees 9

The overall multi-level framework We can run the algorithm level by level until merging
all the subgraphs into one, and in the final level the pseudo nodes will correspond to the
K-cliques in the original graph, and the maximum value will be exactly v*. Therefore,
our algorithm can be viewed as an anytime algorithm that refines the upper bound
level-by-level until reaching the maximum value. Although getting to the final level still
requires exponential time, in practice we can stop at any level (denoted as L) and get a
reasonable bound. In experiments, we will show that by merging few trees we already
get a bound very close to the final solution. Algorithm|[I]gives the complete procedure.

Algorithm 1: Multi-level verification framework

input The set of leaf nodes of each tree, S “>, S (2), AU SK); maximum number of independent

sets in a subgraph (denoted as 7'); maximum number of levels (denoted as L), L < [logy (K)1;

1 fork—1,2, ..., Kdo

| UY (A B)® eSO, A= (i)

/* U is defined the same as in Algorithm ??. At level 0, each V; forms a
1-clique by itself. */

3 end

4 forl 1,2, ..., Ldo

/* Enumerate all cliques in each subgraph at this level. Total [K/T'] subgraphs.
*/

s | fork« 1,2, ..., [K/T" do

6 U/E” < U((/l;ll))nl’ U((/l:l))nz* UIEIT_]);

end

8 end

9 fork « 1,2, ..., [K/TF] do

/* Define an independent set V, for each UIEL). In each V;, we create ‘‘pseudo
nodes’’ which combines multiple nodes from lower levels, and assign ‘‘pseudo

prediction values’’ to them. */
10 Vi« {A| (A,B) € U,((L)}; /¥ Vi is a set of sets; each element in V; represents a
clique. */
/* Construct the ‘‘pseudo prediction value’’ for each element in Vli by summing up
all prediction values in the corresponding clique. */
11 Forall A € V/,va « Y;cavi
12 end
13 ¥ « an upper bound of v* using (0} or (T}, given V = {V/,- -, Vr,K/T"]};
/* 1f [K/TEF] =1, only 1 independent set left and each pseudo node represents a
K(—E)lique; or will have a trivial solution where v* is the maximum v, in
U */

1

Handling multi-class tree ensembles. For a multiclass classification problem, say a
C-class classification problem, C groups of tree ensembles (each with K trees) are built
for the classification task; for the k-th tree in group c, prediction outcome is denoted as
i) = m0) (x) where m%€) (x) is the function that maps the input example x to a
leaf node of tree k in group c. The final prediction is given by arg max,. >} v;.c). Given
an input example x with ground-truth class ¢ and an attack target class ¢’, we extract 2K
trees for class ¢ and class ¢’, and flip the sign of all prediction values for trees in group
¢’, such that initially }; v;«.c) + X2; V;.ery < 0 for a correctly classified example. Then,
we are back to the binary classification case with 2K trees, and we can still apply our
multi-level framework to obtain a lower bound r (e.c”) of r’(kc,c,) for this target attack pair
(¢, ¢’). Robustness of an untargeted attack can be evaluated by taking r = ming ¢ - (exc))

10 Chen et al.

Dataset ¢; MILP Ours ¢} DP approx. Ours vs. MILP Ours { verification
name € |robust err.|avg. time | precision|robust err.|avg. time | MILP/ours [speedup Javg. robust *|robust acc. |avg. time
breast-cancer 0.3] 10.94% | .030s 0.01 10.94% | .00025s 1.00 120X .04 95.62% | .0006
diabetes 0.05] 35.06% | .017s | 0.0002 | 35.06% | .0004s 1.00 40X 0 100% .0005s
Fashion-MNIST shoes| 0.1 | 10.45% | .105s 0.005 | 10.55% | .0013s 99 80.8X 2.09 16.35% | .010s
MNIST 1 vs. 5 03] 3.30% 0.11s 0.005 3.35% | 0.0013s 1.00 71X 3.33 3.50% .010s
MNIST 2 vs. 6 03] 9.64% | 0.099s | 0.005 9.69% | .0012s 98 82X 1.22 26.43% | .012s

Table 1: General £,-norm ensemble stump verification. This table reports robust test
error (robust err.) and average per sample time consumption (avg. time) of each method.
For our proposed DP based verification, precision is also reported. For ¢, verification,
we also report average robust radius r*, which means averagely how many features can
be perturbed at most when the prediction stays the same.

Handling ¢,, norm verification for p < co. In the £, norm case when p < oo, the
elimination step will lead to incorrect answer. Let Ball,(x, €) be the £,-norm ball
with radius € around x. For boxes (Bl, ...,BT), even if B: N B/ # 0 for all i,j and
BN Ball,(x,€) # 0 for all i, it is not guaranteed that B' N B'... N BT N Ball,(x,€) # 0.
Here we can generalize the framework to £, cases. In each layer from 1 to L, we split
the T trees into groups of K. We find the K-size cliques in each group, which are
non-intersected boxes, and form a group of new virtual nodes. After that, we keep the
cliques which have nonempty intersection with Ball,,(x, €) in the group. This group can
then be treated as a virtual tree at the next level. This gives us an efficient algorithm for
{p, robustness verification.

4 Experimental Results

The results on real datasets demonstrate the proposed verification algorithms can compute
a reasonably tight bound while being able to scale to large datasets. The statistics of the
data sets are shown in Appendix D]

Robustness Verification for Ensemble Stumps. As discussed in the paper, we show
¢, norm verification has polynomial time algorithm only when p = 0, co. We thus
pick p = 0 to demonstrate the algorithm works exactly and p = 1 to demonstrate our
approximate verification algorithm can output reasonably tight bounds. Ensembles that
are verified are trained with £, training proposed in [[L].

For the £; norm robustness verification problem, we have shown it’s NP-complete to
conduct exact verification. To demonstrate the tightness and efficiency of the proposed
Dynamic Programming (DP) based verification, we also run the Mixed Integer Linear
Programming [10] to get the exact robust bound which takes exponential time. In Table
[} we can find that the proposed DP algorithm gives almost exactly the same bound with
MILP, while being 50 — 100 times faster. This speedup guarantees its further applications
in certified robust training. For the £, norm robustness verification problem, we propose
a linear time algorithm for conducting exact robustness verification. The results are
also reported in Table[I] We can observe that the proposed method can conduct exact
verification in less than 0.1 second.

Robustness Verification for Ensemble Trees. We evaluate our approximate £, ver-
ification method for tree ensembles on five real datasets. Ensembles that are verified
are trained with £, training proposed in [1]], each of which contains 20 trees. Again,
we compare the proposed algorithm with MILP-based verification [10] which takes

Robustness Verification for Ensemble Stumps and Trees 11

Dataset {1 MILP Ours ¢; approx. Ours vs. MILP
name € Jrobust err.|avg. time | K|L |robust err.|avg. time Jrobust err. |speedup
breast-cancer 03] 8.03% .036s 3|2 8.03% .012s 1.00 3X
diabetes 0.05] 33.12% | .027s |3|2| 33.12% | .012s 1.00 2.25X
Fashion-MNIST shoes| 0.1 10% .091s |3(2] 10% .011s 1.00 8.23X
MNIST 1 vs. 5 03] 420% | 0.088s |3|2| 4.20% .011s 1.00 8X
MNIST 2 vs. 6 03] 8.60% .098s 3|2 8.80% .012s 98 8.17X

Table 2: General £,-norm tree ensemble verification. This table reports robust test
error (robust err.) and average per sample time consumption (avg. time) of each method.
For our generalized verification framework, K: size of cliques, and L: layer of the
framework are also reported.

MILP [10] LP relaxation Ours Ours vs. MILP
avg. r*|avg. timejavg. r; p|avg. time]T|L|avg. r . |ave. time}r . /r*|speedup
breast-cancer | .210 | .012s .064 .009s |2 .208 .001s .99 12X
diabetes .049 | .061s .015 .026s |3

2
2

Dataset L
1
2| .042 .018s .86 34X
Fashion-MNIST] .014* | 1150*s | .003* | 898*s 1
2
1

012 11.8s .86 97X
MNIST 011* | 367*s .003* | 332*s .011 5.14s 1.00 71X

MNIST2vs.6 | 057 | 23.0s | 016 | 11.6s |4|1| 046 | 5855 | .81 | 39X
Table 3: Average {., distortion over 500 examples and average verification time per
example for three verification methods. Here we evaluate the bounds for standard
(natural) GBDT models. Results marked with a start (“x”) are the averages of 50
examples due to long running time. 7 is the number of independent sets and L is the
number of levels in searching cliques used in our algorithm. A ratior , /r* close to 1
indicates better lower bound quality.

exponential time to get the exact bound. The results are presented in Table [2| and
parameters of the proposed method (K and L) are also reported. We observe that the
proposed verification method gets very tight robust error while being much faster than
the MILP solver.

Note that as described in the previous section, the £, norm tree verification using our
algorithm can be more efficient than a general £, norm. Here we then show the results on
the £ norm verification in Table [3} Note that for this experiment we are trying to verify
naturally trained tree ensembles by XGBoost. And instead of computing the robust error
for a particular €, we further conduct binary search for each sample to find the minimum
{s norm adversarial perturbation, denoted as 7oy, and compared with the optimal value
by MILP, denoted by r*. Furthermore, to show that directly relaxing MILP to Linear
Programming (LP) won’t give a tight lower bound, we also report its value 7 p in Table
[3] The results show that our method can get a reasonably tight lower bound of MILP
solution efficiently and much better than the LP relaxation.

5 Conclusion

In this paper, we study the robustness verification problem for ensemble stumps and trees.
For both cases, we conduct a careful analysis of the computational complexity and propose
efficient approximation algorithms to compute a sound robustness verification bound
when the problem is NP-complete. Experimental results on real datasets demonstrate the
efficiency and tightness of the proposed methods.

Bibliography

[1] M. Andriushchenko and M. Hein. Provably robust boosted decision stumps and
trees against adversarial attacks. In NeurIPS, 2019.

[2] O. Bastani, Y. Pu, and A. Solar-Lezama. Verifiable reinforcement learning via
policy extraction. In Advances in Neural Information Processing Systems, pages
2494-2504, 2018.

[3] C.Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575-577, 1973.

[4] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks.
In Security and Privacy (SP), 2017 IEEE Symposium on, pages 39-57. IEEE, 2017.

[5] L. S. Chandran, M. C. Francis, and N. Sivadasan. Geometric representation of
graphs in low dimension using axis parallel boxes. Algorithmica, 56(2):129, 2010.

[6] H. Chen, H. Zhang, D. Boning, and C.-J. Hsieh. Robust decision trees against
adversarial examples. In ICML, 2019.

[7]1 T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, pages 785-794. ACM, 2016.

[8] M. Cheng, T. Le, P.-Y. Chen, J. Yi, H. Zhang, and C.-J. Hsieh. Query-efficient
hard-label black-box attack: An optimization-based approach. In ICLR, 2019.

[9] L. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

[10] A. Kantchelian, J. Tygar, and A. Joseph. Evasion and hardening of tree ensemble

classifiers. In ICML, 2016.

[11] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An

efficient smt solver for verifying deep neural networks. In International Conference

on Computer Aided Verification, pages 97-117. Springer, 2017.

[12] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu.

Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural

Information Processing Systems, pages 3146-3154, 2017.

[13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep

learning models resistant to adversarial attacks. In /CLR, 2018.

[14] M. Mirghorbani and P. Krokhmal. On finding k-cliques in k-partite graphs.

Optimization Letters, 7(6):1155-1165, 2013.

[15] C. A. Phillips, K. Wang, E. J. Baker, J. A. Bubier, E. J. Chesler, and M. A. Langston.

On finding and enumerating maximal and maximum k-partite cliques in k-partite

graphs. Algorithms, 12(1):23, 2019.

[16] M. Schneider and B. Wulthorst. Cliques in k-partite graphs and their application in

textile engineering. 2002.

[17] G. Singh, T. Gehr, M. Mirman, M. Piischel, and M. Vechev. Fast and effective

robustness certification. In NIPS, 2018.

[18] G. Singh, T. Gehr, M. Piischel, and M. Vechev. An abstract domain for certifying

neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):

41, 2019.

Robustness Verification for Ensemble Stumps and Trees 13

[19] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Efficient formal safety analysis
of neural networks. In NIPS, 2018.

[20] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning, I. S. Dhillon,
and L. Daniel. Towards fast computation of certified robustness for relu networks.
In ICML, 2018.

[21] E. Wong and J. Z. Kolter. Provable defenses against adversarial examples via the
convex outer adversarial polytope. In ICML, 2018.

[22] H. Zhang, S. Si, and C.-J. Hsieh. GPU-acceleration for large-scale tree boosting.
SysML Conference, 2018.

[23] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel. Efficient neural
network robustness certification with general activation functions. In NIPS, 2018.

A Algorithm for computing the box for each leaf

Conceptually, the main idea of our single tree verification algorithm is to compute
a d-dimensional box for each leaf node such that any example in this box will fall
into this leaf. Mathematically, the node i’s box is defined as the Cartesian product
B = (Ii,rt]x---x(I', 7] of d intervals on the real line. By definition, the root node has
box [—00, 0] X - - - X [—00, co] and given the box of an internal node i, its children’s boxes
can be obtained by changing only one interval of the box based on the split condition
(t;,1;). More specifically, if p, g are node i’s left and right child node respectively, then
we set their boxes B? = (I7,r{'] x ---x (I!,r] and BY = (I, r]] x --- x (12, 7%] by
setting

(17, rP] = (5,71 ift#1 (19,79 = (18, ri] ifr# 1
0 \Umingrin] o=t T ((max{lg)n] =
(12)

After computing the boxes for internal nodes, we can also obtain the boxes for leaf nodes
using (I2)). Therefore computing the boxes for all the leaf nodes of a decision tree can be
done by a depth-first search traversal of the tree with time complexity O (nd).

B Proof of Theorem[1]

Proof. We show that a 0-1 Knapsack problem can be reduced to an ensemble stump
verification problem. A 0-1 Knapsack problem can be defined as follows. Assume there
are T items each with weight w; and value v;, the (decision version of) 0-1 Knapsack
problem aims to determine whether there exists a subset of items S such that ;.o w; < C
and with value } ;g v; > D.

We construct a decision stump verification problem with T features and T stumps,
where each decision stump corresponds to one feature. Assume x is the original example,
we define each decision stump to be

. D
g'(s)=—-vil(s>n)+ 7 where n; = x; + w;l/p), (13)

14 Chen et al.

where () is the indicator function. The goal is to verify £, robustness with € =
C/P). We need to show that this robustness verification problem outputs YES
(minjx—y||, <e 2 gi(xlf) < 0) if and only if the Knapsack solution is also YES. If
the verification found v* = min,_y |, <e 2; ' (x/) < 0, let x’ be the corresponding
solution of verification, then we can choose the following S for 0-1 Knapsack:

S={ilx;>mn} (14)
It is guaranteed that
Dwi= Y Imi—xil? < Yk —xilP <ef =C (15)
ieS ieS i

and by the definition of g we have 3, g (x]) = D= 3es vi < 0,50 this subset S will also
be feasible for the Knapsack problem. On the other hand, if the 0-1 Knapsack problem
has a solution S, for robustness verification problem we can choose x” such that

, ni ifieS
x; =)
x; otherwise

By definition we have }; gi(xlf) =D — Yes Vi <0. Therefore the Knapsack problem,
which is NP-complete, can be reduced to £, norm decision stump verification problem
with any p € (0, o) in polynomial time.

C Proof of Lemmal(l

Proof. If we have K one dimensional intervals I} = (Iy,r1], L = (lo,r2],..., It =
(Ik,rk], we want to prove if every pair of them have nonempty overlap I N---NIg # 0.
This can be proved by the following. Without loss of generality we assume [} < [, < --- <

Ig.Foreach k < K, I, N Ix # 0 implies [x < r. Therefore, (I7, min(ry,rp,...,rg)]
will be a nonempty set that is contained in Iy, I, . .., Ig. Therefore L NILbN---NIg # 0
and it is another interval.

This can be generalized to d-dimensional boxes. Assume we have boxes By, ..., Bg

such that B; N B; # 0 for any i and j. Then for each dimension we can apply the above
proof, which implies that B N By N --- N Bg # 0 and the intersection will be another
box.

D Data Statistics and Model Parameters

Table [] presents data statistics and parameters for the models in the main text. The
standard test accuracy is the model accuracy on natural, unmodified test sets.

Robustness Verification for Ensemble Stumps and Trees 15

training| test #of | #of |#of [robust depth standard test acc.
set size |set size|features|classes|trees| € |robust|natural|robust| natural
breast-cancer 546 137 10 2 4 0.3 8 6 978 964
diabetes 614 154 8 2 20 | 0.2 5 5 186 173
Fashion-MNIST| 60,000 | 10,000| 784 10 | 200 0.1 8 8 903 903
MNIST 60,000 | 10,000| 784 10 [200] 0.3 8 8 .980 .980
MNIST 2vs. 6 | 11,876 | 1,990 | 784 2 [1000| 0.3 6 4 997 998

Table 4: The data statistics and parameters for the models presented in this paper.

Dataset

On Symbolically Encoding the
Behavior of Random Forests

Arthur Choi', Andy Shih?, Anchal Goyanka', and Adnan Darwiche'

1 Computer Science Department, UCLA
{aychoi, anchal, darwiche}@cs.ucla.edu
2 Computer Science Department, Stanford University
andyshih@cs.stanford.edu

Abstract. Recent work has shown that the input-output behavior of
some machine learning systems can be captured symbolically using Bool-
ean expressions or tractable Boolean circuits, which facilitates reasoning
about the behavior of these systems. While most of the focus has been
on systems with Boolean inputs and outputs, we address systems with
discrete inputs and outputs, including ones with discretized continuous
variables as in systems based on decision trees. We also focus on the suit-
ability of encodings for computing prime implicants, which have recently
played a central role in explaining the decisions of machine learning sys-
tems. We show some key distinctions with encodings for satisfiability,
and propose an encoding that is sound and complete for the given task.

Keywords: Explainable AT - Random Forests - Prime Implicants.

1 Introduction

Recent work has shown that the input-output behavior of some machine learn-
ing systems can be captured symbolically using Boolean expressions or tractable
Boolean circuits [10,12,16,25,7,8,26,23]. These encodings facilitate the rea-
soning about the behavior of these systems, including the explanation of their
decisions, the quantification of their robustness and the verification of their prop-
erties. Most of the focus has been on systems with Boolean inputs and outputs,
with some extensions to discrete inputs and outputs, including discretizations
of continuous variables as in systems based on decision trees; see, e.g., [2,15,9].
This paper is concerned with the latter case of discrete/continuous systems but
those that are encoded using Boolean variables, with the aim of utilizing the
vast machinery available for reasoning with Boolean logic. Most prior studies of
Boolean encodings have focused on the tasks of satisfiability and model count-
ing [11,27,2]. In this paper, we focus instead on prime implicants which have
recently played a central role in explaining the decisions of machine learning
systems [25, 20, 7-9, 5]; cf. [21]. We first highlight how the prime implicants of
a multi-valued expression are not immediately obtainable as prime implicants
of a corresponding Boolean encoding. We reveal how to compute these prime
implicants, by computing them instead on a Boolean expression derived from

2 A. Choi et al.

value| interval XY J[(XY)
T1 (7007 2) il u (1)
v | [2,6) UL
z3 | [6,400) 332 u 1
y1 |(—o0,=T7) xj zi 0
oRoNoRolL =R+ N

Fig. 1. (Left) A decision tree of continuous variables X and Y, where a solid branch
means the test is true, and a dashed branch means false. (Center) A discretization of
X and Y into intervals. (Right) The discrete function represented by the decision tree.

the encoding. Our study is conducted in the context of encoding the behavior of
random forests using majority voting, but our results apply more broadly.

This paper is structured as follows. We introduce the task in Section 2 as
well as review related work. We discuss in Section 3 the problem of explaining
the decisions of machine learning systems whose continuous features can be
discretized into intervals. We follow in Section 4 by a discussion on encoding
the input-output behavior of such systems, where we analyze three encodings
from the viewpoint of computing explanations for decisions. We show that one of
these encodings is suitable for this purpose, if employed carefully, while proving
its soundness and completeness for the given task. We finally close in Section 5.

2 Boolean, Discrete and Continuous Behaviors

The simplest behaviors to encode are for systems with Boolean inputs and out-
puts. Consider a neural network whose inputs are Boolean and that has only step
activation functions. Each neuron in this network computes a Boolean function
and therefore each output of the network also computes a Boolean function. The
input-output behavior of such networks can be immediately represented using
Boolean expressions, or Boolean circuits as proposed in [3, 23].

Suppose now that the inputs to a machine learning system are discrete vari-
ables, say, variable A with values 1, 2, 3, variable B with values r, b, g and variable
C with values [, m, h. One can define a multi-valued propositional logic to cap-
ture the behavior of such a system. The atomic expressions in this case will be
of the form V=wv, indicating that discrete variable V has the value v. We can
then construct more complex expressions using Boolean connectives. An example
expression in this logic would be (B=r Vv B=b) = (4=2A-C=h).

Some systems may have continuous variables as inputs, which get discretized
during the learning process as is the case with systems based on decision trees.
Consider for example the decision tree in Figure 1 (left) over continuous variables
X and Y. The algorithm that learned this tree discretized its variables as follows:
X to intervals (—o0,2),[2,6), [6,4+00) and Y to intervals (—oo, —7),[—7, +00).

We can now think of variable X as a discrete variable with three values
x1,%2,x3, each corresponding to one of the intervals as shown in Figure 1

On Symbolically Encoding the Behavior of Random Forests 3

(center). Variable Y is binary in this case, with each value corresponding to
one of the two intervals. According to this decision tree, the infinite number
of input values for variables X and Y can be grouped into six equivalence
classes as shown in Figure 1 (right). Hence, the input-output behavior of this
decision tree can be captured using the multi-valued propositional expression
f(X,Y) = (X=x1 AY=y3)V X=2x5, even though we have continuous variables.

Our goal is therefore to encode multi-valued expressions using Boolean ex-
pressions as we aim to exploit the vast machinery currently available for reason-
ing with propositional logic. This includes SAT-based and knowledge compilation
tools, which have been used extensively recently to reason about the behavior
of machine learning systems [10, 12, 16, 25, 7, 8, 26, 23].

Encoding multi-valued expressions using Boolean expressions has been of in-
terest for a very long time and several methods have been proposed for this
purpose; see, e.g., [11,27,2]. In some cases, different encodings have been com-
pared in terms of the efficacy of applied SAT-based tools; see, e.g., [27]. In this
paper, we consider another dimension for evaluating encodings, which is based
on their suitability for computing prime implicants. This is motivated by the
fundamental role that implicants have been playing recently in explaining the
decisions of machine learning systems [25, 20, 7-9, 5]

The previous works use the notion of a Pl-explanation when explaining the
decision of a classifier on an instance. A PI-explanation, introduced in [25], is a
minimal set of instance characteristics that are sufficient to trigger the decision.
That is, if these characteristics are fixed, other instance characteristics can be
changed freely without changing the decision. In an image, for example, a PI-
explanation corresponds to a minimal set of pixels that guarantees the stability
of a decision against any perturbation of the remaining pixels.?

Pl-explanations are based on prime implicants of Boolean functions, which
have been studied extensively in the literature [4, 17,13, 18]. Consider the follow-
ing Boolean function over variables A, B and C: f = (A+C)(B+C)(A+ B). A
prime implicant of the function is a minimal setting of its variables that causes
the function to trigger. This function has three prime implicants: AB, AC' and
BC'. Consider now the instance ABC leading to a positive decision f(ABC) = 1.
The Pl-explanations for this decision are the prime implicants of function f that
are compatible with the instance: AB and BC. Explaining negative decisions
requires working with the function’s complement f. Consider instance ABC,
which sets the function f to 0. The complement f has three prime implicants
AC, BC and A B. Only one of these is compatible with the instance, AC, so it
is the only PI-explanation for the decision on this instance.*

3 A PI-explanation can be viewed as a (minimally) sufficient reason for the decision [5].

4 The popular Anchor system [22] can be viewed as computing approximations of
Pl-explanations. The quality of these approximations has been evaluated on some
datasets and corresponding classifiers in [9], where an approximation is called opti-
mistic if it is a strict subset of a PI-explanation and pessimistic if it is a strict superset
of a Pl-explanation. Anchor computes approximate explanations without having to
abstract the machine learning system behavior into a symbolic representation.

4 A. Choi et al.

When considering the encoding of multi-valued expressions using Boolean
ones, we will be focusing on whether the prime implicants of multi-valued ex-
pressions can be soundly and completely obtained from the prime implicants of
the corresponding Boolean expressions. This is motivated by the desire to ex-
ploit existing algorithms and tools for computing prime implicants of Boolean
expressions (one may also consider developing a new set of algorithms and tools
for operating directly on multi-valued expressions).

Before we propose and evaluate some encodings, we need to first define the
notion of a prime implicant for multi-valued expressions and then examine ex-
planations from that perspective. This is needed to settle the semantics of ex-
planations in a multi-valued setting, which will then form the basis for deciding
whether a particular encoding is satisfactory from the viewpoint of computing
explanations. As the following discussion will reveal, the multi-valued setting
leads to some new considerations that are preempted in a Boolean setting.

3 Explaining Decisions in a Multi-Valued Setting

Consider again the decision tree in Figure 1 whose behavior is captured by the
multi-valued expression (X=1x1 A Y=y,) V X=1x as discussed earlier. Consider
also the positive instance X=3 A Y=12, which can be represented using the
multi-valued expression « : X=x5 A Y=gy as shown in Figure 1.

Instance « has two characteristics X=1x5 and Y=1ys, yet one of them X=x5 is
sufficient to trigger the positive decision. Hence, one explanation for the decision
is that variable X takes a value in the interval [2,6), which justifies X=x5 as a
Pl-explanation of this positive decision. In fact, if we stick to the literal definition
of a Pl-explanation from the Boolean setting, then this would be the only PI-
explanation since Y=y, is the only characteristic that can be dropped from the
instance while guaranteeing that the decision will stick.

Looking closer, this decision would also stick if the value of X were contained
in the larger interval (—oo,6) as long as characteristic Y=y, is maintained.
The interval (—o0, 6) corresponds to (X=x1 V X=2x5), leading to the expression
(X=x1VX=1x2) ANY=1ys. This expression is the result of weakening literal X=xo
in instance X=x5 A Y=1y. It can be viewed as a candidate explanation of the
decision on this instance, just like X=1x5, in the sense that it also represents an
abstraction of the instance that preserves the corresponding decision.

For another example, consider the negative decision on instance X=10 A
Y=-20, and its corresponding multi-valued expression o : X=x3AY=y;. Recall
that 23 represents the interval [6, +00) and y; represents the interval (—oo, —7).
We can drop the characteristic Y=y, from this instance while guaranteeing that
the negative decision will stick (i.e., regardless of what value variable Y takes).
Hence, X=uz3 is a Pl-explanation in this case. But again, if we maintain the
characteristic Y=1y, then this negative decision will stick as long as the value of
X is in the larger, disconnected interval (—oo, 2] U [6, +00). This interval is rep-
resented by the expression X=1x1 V X=x3 which is a weakening of characteristic
X=uwx3. This makes (X=xz1 V X=23) A Y=y; a candidate explanation as well.

On Symbolically Encoding the Behavior of Random Forests 5

3.1 Multi-Valued Literals, Terms and Implicants

We will now formalize some notions on multi-valued variables and then use them
to formally define PI-explanations in a multi-valued setting [19, 14]. We use three
multi-valued variables for our running examples: Variable A with values 1,2, 3,
variable B with values r, b, g and variable C' with values [, m, h.

A literal is a non-trivial propositional expression that mentions a single vari-
able. The following are literals: B=r VvV B=b, A=2 and C#h. The following are
not literals as they are trivial: B=rV B=bV B=¢g and C=h A C# h. Intuitively,
for a variable with n values, a literal specifies a set of values S where the car-
dinality of set S is in {1,...,n — 1}. A literal is simple if it specifies a single
value (cardinality of set S is 1). When multi-valued variables correspond to the
discretization of continuous variables, our treatment allows a literal to specify
non-contiguous intervals of a continuous variable.

Consider two literals ¢; and ¢; for the same variable. We say ¢; is stronger
than ¢; iff ¢; = ¢; and ¢; # ¢;. In this case, ¢; is weaker than ¢;. For example,
B=r is stronger than B=rV B=». It is possible to have two literals where neither
is stronger or weaker than the other (e.g., B=rV B=b and B=y).

A term is a conjunction of literals over distinct variables. The following is
a term: A=2 A (B=rV B=b) A C#£h. A term is simple if all of its literals are
simple. The following term is simple: A=2 A B=r A C=h. The following terms
are not simple: A#2 A B=r AC=h and A=2 A (B=r Vv B=0b) A C=h. A simple
term that mentions every variable is called an instance.

Term 7; subsumes term 7; iff 7; = 7;. If we also have 7; # 7, then 7; strictly
subsumes 7;. For example, the term A=2 A (B=rV B=b) A C#h is strictly
subsumed by the terms A#1 A (B=rV B=b) A C#h and A=2 A C#h.

We stress two points now. First, if term 7; strictly subsumes term 7; that does
not necessarily mean that 7; mentions a fewer number of variables than 7;. In
fact, it is possible that the literals of 7; and 7; are over the same set of variables.
Second, a term does not necessarily fix the values of its variables (unless it is a
simple term), which is a departure from how terms are defined in Boolean logic.

In Boolean logic, the only way to get a term that strictly subsumes term 7 is
by dropping some literals from 7. In multi-valued logic, we can also do this by
weakening some literals in term 7 (i.e., without dropping any of its variables).
This notion of weakening a literal generalizes the notion of dropping a literal in
the Boolean setting. In particular, dropping a Boolean literal ¢ from a Boolean
term can be viewed as weakening it into ¢V —/.

Term 7 is an émplicant of expression A iff 7 = A. Term 7 is a prime implicant
of A iff it is an implicant of A that is not strictly subsumed by another implicant
of A. It is possible to have two terms over the same set of variables such that
(a) the terms are compatible in that they admit some common instance, (b) both
are implicants of some expression A, yet (¢) only one of them is a prime implicant
of A. We stress this possibility as it does not arise in a Boolean setting. We define
the notions of simple implicant and simple prime implicant in the expected way.

6 A. Choi et al.

3.2 Multi-Valued Explanations

Consider now a classifier specified using a multi-valued expression A. The vari-
ables of A will be called features so an instance « is a simple term that mentions
all features. That is, an instance fixes a value for each feature of the classifier. A
decision on instance « is positive iff the expression A evaluates to 1 on instance
a, written A(a) = 1. Otherwise, the decision is negative (when A(a) = 0).

The notation A, is crucial for defining explanations: A, is defined as A if
decision A(«) is positive and A,, is defined as —A if decision A(«a) is negative.
A Pl-explanation for decision A(«) is a prime implicant of A, that is consis-
tent with instance «. This basically generalizes the notion of Pl-explanation
introduced in [25] to a multi-valued setting.

The term ezplanation is somewhat too encompassing so any definition of this
general notion is likely to draw criticism as being too narrow. The PI-explanation
is indeed narrow as it is based on a syntactic restriction: it must be a conjunction
of literals (i.e., a term) [25]. In the Boolean setting, a PI-explanation is a minimal
subset of instance characteristics that is sufficient to trigger the same decision
made on the instance. In the multi-valued setting, it can be more generally
described as an abstraction of the instance that triggers the same decision made
on the instance (still in the syntactic form of a term).

As an example, consider the following truth table representing the decision
function of a classifier over two ternary variables X and Y:

XY | @y | ziye | 2ys | woyr | woys | woys | wsyr | wsye | wsys
fxyY)yl v oo [1] oo 1 [1]1

Consider instance X=x3 A Y=y; leading to a positive decision. The sub-term
X=1x3 is a Pl-explanation for this decision: setting input X to x3 suffices to trig-
ger a positive decision. Similarly, the sub-term Y=1v; is a second Pl-explanation
for this decision. Consider now instance X=x7 A Y=y- leading to a negative
decision. This decision has a single PI-explanation: Xz x3AY#y;. Any instance
consistent with this explanation will be decided negatively.

4 Encoding Multi-Valued Behavior

We next discuss three encodings that we tried for the purpose of symbolically
representing the behavior of decision trees (and random forests). The first two
encodings turned out unsuitable for computing prime implicants. Here, suitabil-
ity refers to the ability of computing multi-valued prime implicants by processing
Boolean prime implicants locally and independently. The third encoding, based
on a classical encoding [11], was suitable for this purpose but required a usage
that deviates from tradition. Using this encoding in a classical way makes it
unsuitable as well. The summary of the findings below is that while an encod-
ing may be appropriate for testing satisfiability or counting models, it may not
be suitable for computing prime implicants (and, hence, explanations). While
much attention was given to encodings in the context of satisfiability and model
counting, we are not aware of similar treatments for computing prime implicants.

On Symbolically Encoding the Behavior of Random Forests 7

4.1 Prefix Encoding

Consider a multi-valued variable X with values x1,...,z,. This encoding uses
Boolean variables s, ..., z, to encode the values of variable X. Literal X=uz;
is encoded by setting the first ¢ — 1 Boolean variables to 1 and the rest to 0.
For example, if n = 3, the values of X are encoded as ZToZT3, x2Z3 and xox3.
Some instantiations of these Boolean variables will not correspond to any value
of variable X and are ruled out by enforcing the following constraint: all Boolean
variables set to 1 must occur before all Boolean variables set to 0. We denote
this constraint by ¥x: /\ie{&___,n}(:ci = Xi1).

The fundamental problem with this encoding is that a multi-valued literal
that represents non-contiguous values cannot be represented by a Boolean term.
Hence, this encoding cannot generate prime implicants that include such literals.
Consider the multi-valued expression A = (X=1z1V X=x3), where X has values
Z1,-..,2Tq4, and its Boolean encoding A, = ZToT3T4 + xow3Z4. There is only one
prime implicant of A, which is X=x; V X=u=3, but this prime implicant cannot
be represented by a Boolean term (that implies Ayp) so it will never be generated.

4.2 Highest-Bit Encoding

Consider a multi-valued variable X with values x1,xs,...,x,. This encoding
uses Boolean variables xo, x3,..., %, to encode the values of variable X. Every
instantiation of these Boolean variables will map to a value of variable X in
the following way. If all Boolean variables are 0, then we map the instantiation
to value x1. Otherwise we map an instantiation to the maximum index whose
variable is 1. The following table provides an example for n = 4.

ToX3Tq 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
highest 1-index | - 4 3 4 2 4 3 4
value T1 Ta | T3 | Ta | T2 | T4 | T3 | Ta

We can alternatively view this encoding as representing literal X==1 using the
Boolean term Zs...Z, and literal X=z;, ¢ > 2, using the term x;Z;y1...%,.
Literals over multiple values can also be represented with this encoding. For
example, we can represent the literal X=1z1 V X=2x5 using the term z3%4.

This encoding also turned out to be unsuitable for computing prime impli-
cants. Consider the multi-valued expression A = (X=x; V X=ux3), which has
one prime implicant A. The Boolean encoding Ay is ToZ3%4 + x3Z4 and has two
prime implicants T2Z4 and x3Z4. The term x3Z4 corresponds to the multi-valued
implicant X=2x3, which is not prime. The term ZsZ4 does not even correspond
to a multi-valued term. So in this encoding too, prime implicants of the original
multi-valued expression A cannot be computed by locally and independently
processing prime implicants of the encoded Boolean expression Ay.

4.3 One-Hot Encoding

The prefix and highest-bit encodings provide some insights into requirements
that enable one to locally and independently map Boolean prime implicants into

8 A. Choi et al.

multi-valued ones. The requirements are: (1) every multi-valued literal should
be representable using a Boolean term, and (2) equivalence and subsumption
relations over multi-valued literals should be preserved over their Boolean en-
codings. The next encoding satisfies these requirements. It is based on [11] but
deviates from it in some significant ways that we explain later.

Suppose X is a multi-valued variable with values 1, ..., z,. This encoding
uses a Boolean variable x; for each value x; of variable X. Suppose now that ¢
is a literal that specifies a subset S of these values. The literal will be encoded
using the negative Boolean term /\17 ¢s Ti- For example, if variable X has three
values, then literal X=x5 will be encoded using the negative Boolean term Z1Z3
and literal X==z1 V X=x5 will be encoded using the negative Boolean term 3.
This encoding requires the employment of an exactly-one constraint for each
variable X, which we denote by ¥x: (V, i) A A\, ; =(2: A ;). We also use ¥ to
denote the conjunction of all exactly-one constraints.

Using the encoding in [11], one typically represents literal X=2x; by the Bool-
ean term x; which asserts value x;. Our encoding, however, represents this literal
by eliminating all other values of X. The following result reveals why we made
this choice (proofs of results can be found in the appendix).

Proposition 1. Multi-valued terms correspond one-to-one to negative Boolean
terms that are consistent with V. FEquivalence and subsumption relations on
multi-valued terms are preserved on their Boolean encodings.

Exactly-one constraints are normally added to an encoding as done in [11].
We next show that this leads to unintended results when computing prime
implicants, requiring another deviation from [11]. Consider two ternary vari-
ables X and Y, the expression A : X=x; V Y=v; and its Boolean encod-
ing Ay : ToZ3 + Yoys. If ¥ is the conjunction of all exactly-one constraints
(U =Ux AWy), then A and Ay AP will each have five models:

A ‘ X:$1,Y:y1 ‘ X:xl,Y:yg ‘ X:$1,Y:y3 ‘ X::rg,Y:yl ‘ X:wg,Y:y1

Ay AN ‘ T1T2T3Y1Y2Y3 ‘ T1T2T3Y1Y2Y3 ‘ T1T2T3Y1Y2Y3 ‘ T1T2X3Y1Y2Y3 ‘ T1T2X3Y1Y2Y3

The term X=2x4 is an implicant of A. However, its corresponding Boolean en-
coding ToZ3 is not an implicant of A, A ¥ (neither is x1Z2Z3). For example,
T1ZT2T3y1Y2Y3 does not imply A, AW since y1y273 does not satisfy the exactly-one
constraint ¥y . This motivates Definition 1 below and further results on handling
exactly-one constraints, which we introduce after some notational conventions.
In what follows, we use A/7 to denote multi-valued expressions/terms, and
I'/p to denote Boolean expressions/terms. We also use Ay and 7, to denote the
Boolean encodings of A and 7. A completion of a term is a complete variable
instantiation that is consistent with the term. We use « to denote completions.
Finally, we use ¥ to denote the conjunction of all exactly-one constraints.

Definition 1. We define p =g I' iff « = I’ for all completions o of Boolean
term p that are consistent with constraint .

Note that p = I implies p |=¢ I" but the converse is not true.

On Symbolically Encoding the Behavior of Random Forests 9

Proposition 2. pl=¢ I' iff pl= (@ = 1).

We now show how one-hot encodings can be used for computing prime im-
plicants, particularly, how exactly-one constraints should be integrated.

Proposition 3. If 7 is a term, then 7 = A iff 1, = (¥ = Ay).

The proof is based on two lemmas that hold by construction and that use
the notion of full encoding of an instance. Consider ternary variables X and Y.
For instance 7 : X=x1 A Y=y, the full encoding is p : 1Z2Z3y19273 (1 and y;
are included). Note that p AW = p since p is guaranteed to satisfy constraints ¥.

Lemma 1. If 7 is an instance and p is its full encoding, then T |= A iff p |E Ay.

Lemma 2. For term 7, there is a one-to-one correspondence between the com-
pletions of T and the completions of T, that are consistent with ¥.

Term 7 : X=1x1V X=1 has six completions: X=x1 AY=y;, X=22AY=y1, ...,
X=ux5 A Y=ys3. Its Boolean encoding 7, : Z3 also has six completions that are
consistent with ¥: x1ZoZ3y1 923, T1L2T3Y1Y2Y3, - - - , T1T2T3Y1Y2y3. Each of these
completions « is guaranteed to satisfy constraints ¥ leading to a AW = «. Next,
we relate the prime implicants of multi-valued expressions and their encodings.

Proposition 4. Consider a multi-valued expression A and its Boolean encoding
Ay. If T is a prime implicant of A, then 7y, is a negative term, consistent with ¥
and a prime implicant of ¥ = Ay. If p is a prime implicant of ¥ = A, negative
and consistent with W, then p encodes a prime implicant of A.

This proposition suggests the following procedure for computing multi-valued
prime implicants from Boolean prime implicants. Given a multi-valued expres-
sion A, we encode each literal in A using its negative Boolean term, leading
to the Boolean expression A,. We then construct the exactly-one constraints
¥ and compute prime implicants of ¥ = A;, keeping those that are negative
and consistent with constraints ¥.°> Those Boolean prime implicants correspond
precisely to the multi-valued prime implicants of A.6

The only system we are aware of that computes prime implicants of decision
tree encodings (and forests) is Xplainer [9]. This system bypasses the encoding
complications we alluded to earlier as it computes prime implicants in a specific
manner [6,7]. In particular, it encodes a multi-valued expression into a Bool-
ean expression using the classical one-hot encoding. But rather than computing

5 It is straightforward to augment the algorithm of [25] so that it only enumerates
such prime implicants, by blocking the appropriate branches.

Note that when computing Pl-explanations, we are interested only in prime impli-
cants that are consistent with a given instance. Any negative prime implicant which
is consistent with an instance must also be consistent with constraints ¥. The only
way a negative Boolean term p can violate constraints ¥ is by setting all Boolean
variables of some multi-valued variable to false. However, every instance o will set
one of these Boolean variables to true so p cannot be consistent with a.

6

10 A. Choi et al.

prime implicants of the Boolean encoding directly (which would lead to incorrect
results), it reduces the problem of computing prime implicants of a multi-valued
expression into one that requires only consistency testing of the Boolean en-
coding, which can be done using repeated calls to a SAT solver. The classical
one-hot encoding is sound and complete for this purpose. Our treatment, how-
ever, is meant to be independent of the specific algorithm used to compute prime
implicants. It would be needed, for example, when compiling the encoding into
a tractable circuit and then computing prime implicants as done in [25, 5].

4.4 Encoding Decision Trees and Random Forests

Consider a decision tree, such as the one depicted in Figure 1. Each internal node
in the tree represents a decision, which is either true or false. Each leaf is anno-
tated with the predicted label. We can thus view a decision tree as a function
whose inputs are all of the unique decisions that can be made in the tree, and
whose output is the resulting label. Each leaf of the decision tree represents a
simple term over the decisions made on the path to reach it, found by conjoining
the appropriate literals. The Boolean function representing a particular class can
then be found by simply disjoining the paths for all leaves of that class. That is,
this Boolean function outputs true for all inputs that result in the corresponding
class label, and false otherwise. We can also obtain this function for an ensemble
of decision trees, such as a random forest. We first obtain the Boolean functions
of each individual decision tree, and then aggregate them appropriately. For a
random forest, we can use a simple majority gate whose inputs are the outputs
of each decision tree; see also [1]. Finally, once we have the Boolean function of
a classifier, we could apply a SAT or SMT solver to analyze it as proposed by
[10, 16, 7]. We could also compile it into a tractable representation, such as an
Ordered Binary Decision Diagram (OBDD), and then analyze it as proposed by
(25,24, 26,23]. In the latter case, a representation such as an OBDD allows us
to perform certain queries and transformation on a Boolean function efficiently,
which facilitates the explanation and formal verification of the underlying ma-
chine learning classifier, as also shown more generally in [1].

5 Conclusion

We considered the encoding of input-output behavior of decision trees and ran-
dom forests using Boolean expressions. Our focus has been on the suitability of
encodings for computing prime implicants, which have recently played a central
role in explaining the decisions of machine learning classifiers. Our findings have
identified a particular encoding that is suitable for this purpose. Our encoding is
based on a classical encoding that has been employed for the task of satisfiability
but that can lead to incorrect results when computing prime implicants, which
further emphasizes the merit of the investigation we conducted in this paper.

Ack. This work has been partially supported by grants from NSF I1S-1910317,
ONR N00014-18-1-2561, DARPA N66001-17-2-4032 and a gift from JP Morgan.

On Symbolically Encoding the Behavior of Random Forests 11

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Audemard, G., Koriche, F., Marquis, P.: On tractable XAI queries based on com-

piled representations. In: Proc. of KR’20 (2020), to appear

Bessiere, C., Hebrard, E., O’Sullivan, B.: Minimising decision tree size as combi-
natorial optimisation. In: CP. Lecture Notes in Computer Science, vol. 5732, pp.
173-187. Springer (2009)

Choi, A., Shi, W., Shih, A., Darwiche, A.: Compiling neural networks into tractable
Boolean circuits. In: AAAT Spring Symposium on Verification of Neural Networks
(VNN) (2019)

Crama, Y., Hammer, P.L.: Boolean Functions - Theory, Algorithms, and Appli-
cations, Encyclopedia of mathematics and its applications, vol. 142. Cambridge
University Press (2011)

Darwiche, A., Hirth, A.: On the reasons behind decisions. In: Proceedings of the
24th European Conference on Artificial Intelligence (ECAI) (2020)

Ignatiev, A., Morgado, A., Marques-Silva, J.: Propositional abduction with im-
plicit hitting sets. In: Proceedings of the 22nd European Conference on Artificial
Intelligence (ECAI). pp. 1327-1335 (2016)

Ignatiev, A., Narodytska, N., Marques-Silva, J.: Abduction-based explanations for
machine learning models. In: Proceedings of the Thirty-Third Conference on Ar-
tificial Intelligence (AAAI). pp. 1511-1519 (2019)

Ignatiev, A., Narodytska, N., Marques-Silva, J.: On relating explanations and ad-
versarial examples. In: Advances in Neural Information Processing Systems 32
(NeurIPS). pp. 1585715867 (2019)

Ignatiev, A., Narodytska, N., Marques-Silva, J.: On validating, repairing and re-
fining heuristic ML explanations. CoRR abs/1907.02509 (2019)

Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: Computer Aided Veri-
fication CAV. pp. 97-117 (2017)

de Kleer, J.: A comparison of ATMS and CSP techniques. In: IJCAI pp. 290-296.
Morgan Kaufmann (1989)

Leofante, F., Narodytska, N., Pulina, L., Tacchella, A.: Automated verification of
neural networks: Advances, challenges and perspectives. CoRR abs/1805.09938
(2018)

McCluskey, E.J.: Minimization of boolean functions. The Bell System Technical
Journal 35(6), 1417-1444 (Nov 1956)

Miller, D.M., Thornton, M.A.: Multiple Valued Logic: Concepts and Representa-
tions, Synthesis lectures on digital circuits and systems, vol. 12. Morgan & Claypool
Publishers (2008)

Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J.: Learning optimal de-
cision trees with SAT. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence (IJCAI). pp. 1362-1368 (2018)
Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. In: Proceedings of the Thirty-Second
AAAT Conference on Artificial Intelligence (AAAT) (2018)

Quine, W.V.: The problem of simplifying truth functions. The American Mathe-
matical Monthly 59(8), 521-531 (1952)

Quine, W.V.: On cores and prime implicants of truth functions. The American
Mathematical Monthly 66(9), 755-760 (1959)

12 A. Choi et al.

19. Ramesh, A., Murray, N.V.: Computing prime implicants/implicates for regular
logics. In: Proceedings of the 24th IEEE International Symposium on Multiple-
Valued Logic (ISMVL). pp. 115-123 (1994)

20. Renooij, S.: Same-decision probability: Threshold robustness and application to
explanation. In: Studeny, M., Kratochvil, V. (eds.) Proceedings of the International
Conference on Probabilistic Graphical Models (PGM). Proceedings of Machine
Learning Research, vol. 72, pp. 368-379. PMLR (2018)

21. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-precision model-agnostic
explanations. In: Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence (AAAT) (2018)

22. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-precision model-agnostic
explanations. In: AAAL pp. 1527-1535. AAAI Press (2018)

23. Shi, W., Shih, A., Darwiche, A., Choi, A.: On tractable representations of binary
neural networks. In: Proc. of KR’20 (2020), to appear

24. Shih, A., Choi, A., Darwiche, A.: Formal verification of bayesian network classifiers.
In: PGM. Proceedings of Machine Learning Research, vol. 72, pp. 427-438. PMLR
(2018)

25. Shih, A.; Choi, A., Darwiche, A.: A symbolic approach to explaining bayesian
network classifiers. In: IJCAIL pp. 5103-5111. ijcai.org (2018)

26. Shih, A., Darwiche, A., Choi, A.: Verifying binarized neural networks by angluin-
style learning. In: SAT (2019)

27. Walsh, T.: SAT v CSP. In: CP. Lecture Notes in Computer Science, vol. 1894, pp.
441-456. Springer (2000)

A Proofs

Proof (of Proposition 1). For multi-valued term 7, the Boolean encoding 7, is a
negative term and consistent with ¥ by construction. Suppose now that p is a
negative Boolean term that is consistent with ¥. If p mentions a Boolean variable
of multi-valued variable X, then p cannot mention all Boolean variables of X,
otherwise p will be ruling out all possible values of X and hence inconsistent
with ¥. Hence, p encodes a literal over variable X when p mentions a Boolean
variable for X. More generally, p encodes a term over multi-valued variables
whose Boolean variables are mentioned in p. To prove the second part of the
theorem, consider literals ¢; and ¢, which specify values S; and .S for variable
X. The two literals are equivalent iff S; = Sy iff /\wi€S1 Z; and /\wi&SQ T; are
equivalent. Moreover, ¢ |= ¢5 iff S; C Sy iff /\wiesl T E /\Jii€52 Z;. Equivalence
and subsumption relations are then preserved on literals, and on terms as well.

Proof (of Proposition 2). (=) Suppose p =y I' and let o be a completion of
p. If a is consistent with ¥, then « = I' by Definition 1. If « is not consistent
with &, then o = —&. Hence, p = =¥ V I'. (<) Suppose p = —¥ V I" and let «
be a completion of p that is consistent with ¥. Then o | =¥ V I' and, hence,
a AW =T and o |=I'. We then have p =y I" by Definition 1.

Proof (of Proposition 3). (=) Suppose 7 = A. Then « = A for all completions
a of 7. By Lemmas 1 and 2, o, = A, for all completions «y, of 7, that are
consistent with W. Hence 7, | - V 4A;. (<) Suppose 7, = —¥ V Ay and let

On Symbolically Encoding the Behavior of Random Forests 13

ap be a completion of 7, (o = —¥ V Ayp). For each «y, consistent with ¥, we
have o = ¥ and hence o | Ap. By Lemmas 1 and 2, the completions « of 7
correspond to these «y (consistent with), leading to o« = A and hence 7 = A.

Proof (of Proposition 4). (=) Suppose T is a prime implicant of A. Then 7 = A.
Moreover, 7, | (¥ = A;) by Proposition 3 so 73, is an implicant of ¥ = A, (73
is negative and consistent with ¥ by construction). Suppose 7, is not a prime
implicant of ¥ = A;. Then p | (¥ = A,) for a strict subset p of 7, which
must be consistent with ¥ since 7, D p is consistent with ¥. Hence, p encodes a
term 7* that is strictly weaker than term 7 by Proposition 1. Moreover, 7* = A
by Proposition 3 so 7 is not a prime implicant of A, which is a contradiction.
Therefore, 7, is a prime implicant of ¥ = A;. (<) Suppose p is a prime impli-
cant of ¥ = A, negative and consistent with ¥. Then p encodes a term 7 by
Proposition 1. Moreover, p = 7, =¥ = Ay so 7 = A by Proposition 3. Hence, 7
is an implicant of A. Suppose now that 7* = A for some term 7* that is strictly
weaker than term 7. Then 77 =¥ = A, by Proposition 3. This means p is not
a prime implicant of ¥ = A, since 77 C 7, = p by Proposition 1, which is a
contradiction. Hence, the term 7 encoded by p is a prime implicant of A.

An Abstraction-Based Framework for Neural
Network Verification

Abstract. Deep neural networks are increasingly being used as con-
trollers for safety-critical systems. Because neural networks are opaque,
certifying their correctness is a significant challenge. To address this issue,
several approaches have recently been proposed to formally verify them.
However, network size is often a bottleneck for such approaches and it can
be difficult to apply them to large networks. In this paper, we propose
a framework that can enhance neural network verification techniques
by using over-approximation to reduce the size of the network — thus
making it more amenable to verification. We perform the approximation
such that if the property holds for the smaller (abstract) network, it holds
for the original as well. The over-approximation may be too coarse, in
which case the underlying verification tool might return a spurious coun-
terexample. Under such conditions, we perform counterexample-guided
refinement to adjust the approximation, and then repeat the process.
Our approach is orthogonal to, and can be integrated with, many exist-
ing verification techniques. For evaluation purposes, we integrate it with
the recently proposed Marabou framework, and observe a significant im-
provement in Marabou’s performance. Our experiments demonstrate the
great potential of our approach for verifying larger neural networks.

1 Introduction

Machine programming (MP), the automatic generation of software, is showing
early signs of fundamentally transforming the way software is developed [11].
A key ingredient employed by MP is the deep neural network (DNN), which
has emerged as an effective means to semi-autonomously implement many com-
plex software systems. DNNs are artifacts produced by machine learning: a user
provides examples of how a system should behave, and a machine learning algo-
rithm generalizes these examples into a DNN capable of correctly handling inputs
that it had not seen before. Systems with DNN components have obtained un-
precedented results in fields such as image recognition [19], game playing [27],
natural language processing [12], computer networks [22], and many others, of-
ten surpassing the results obtained by similar systems that have been carefully
handcrafted. It seems evident that this trend will increase and intensify, and
that DNN components will be deployed in various safety-critical systems [2,14].

DNNs are appealing in that (in some cases) they are easier to create than
handcrafted software, while still achieving excellent results. However, their usage
also raises a challenge when it comes to certification. Undesired behavior has
been observed in many state-of-the-art DNNs. For example, in many cases slight
perturbations to correctly handled inputs can cause severe errors [28,20]. Because

many practices for improving the reliability of hand-crafted code have yet to
be successfully applied to DNNs (e.g., code reviews, coding guidelines, etc.), it
remains unclear how to overcome the opacity of DNNs, which may limit our
ability to certify them before they are deployed.

To mitigate this, the formal methods community has begun developing tech-
niques for the formal verification of DNNs (e.g., [8,13,15,30]). These techniques
can automatically prove that a DNN always satisfies a prescribed property. Un-
fortunately, the DNN verification problem is computationally difficult (e.g., NP-
complete, even for simple specifications and networks [15]), and becomes expo-
nentially more difficult as network sizes increase. Thus, despite recent advances
in DNN verification techniques, network sizes remain a severely limiting factor.

In this work, we propose a technique by which the scalability of many ex-
isting verification techniques can be significantly increased. The idea is to apply
the well-established notion of abstraction and refinement [5]: replace a network
N that is to be verified with a much smaller, abstract network, N, and then
verify this N. Because N is smaller it can be verified more efficiently; and it is
constructed in such a way that if it satisfies the specification, the original net-
work N also satisfies it. In the case that N does not specify the specification, the
verification procedure provides a counterexample x. This x may be a true coun-
terexample demonstrating that the original network IV violates the specification,
or it may be spurious. If « is spurious, the network N is refined to make it more
accurate (and slightly larger), and then the process is repeated. A particularly
useful variant of this approach is to use the spurious x to guide the refinement
process, so that the refinement step rules out = as a counterexample. This vari-
ant, known as counterezample guided abstraction refinement (CEGAR) [5], has
been successfully applied in many verification contexts.

As part of our technique we propose a method for abstracting and refining
neural networks. Our basic abstraction step merges two neurons into one, thus
reducing the overall number of neurons by one. This basic step can be repeated
numerous times, significantly reducing the network size. Conversely, refinement
is performed by splitting a previously merged neuron in two, increasing the
network size but making it more closely resemble the original. A key point is
that not all pairs of neurons can be merged, as this could result in a network
that is smaller but is not an over-approximation of the original. We resolve
this by first transforming the original network into an equivalent network where
each node belongs to one of four classes, determined by its edge weights and its
effect on the network’s output; merging neurons from the same class can then be
done safely. The actual choice of which neurons to merge or split is performed
heuristically. We propose and discuss several possible heuristics.

For evaluation purposes, we implemented our approach as a Python frame-
work that wraps the Marabou verification tool [17]. We then used our framework
to verify properties of the Airborne Collision Avoidance System (ACAS Xu) set
of benchmarks [15]. Our results strongly demonstrate the potential usefulness of
abstraction in enhancing existing verification schemes: specifically, in most cases
the abstraction-enhanced Marabou significantly outperformed the original. Fur-

ther, in most cases the properties in question could indeed be shown to hold or
not hold for the original DNN by verifying a small, abstract version thereof.

To summarize, our contributions are: (i) we propose a general framework
for over-approximating and refining DNNs; (ii) we propose several heuristics for
abstraction and refinement, to be used within our general framework; and (iii) we
provide an implementation of our technique that integrates with the Marabou
verification tool and use it for evaluation.!

The rest of this paper is organized as follows. In Section 2, we provide a
brief background on neural networks and their verification. In Section 3, we
describe our general framework for abstracting an refining DNNs. In Section 4,
we discuss how to apply these abstraction and refinement steps as part of a
CEGAR procedure, followed by an evaluation in Section 5. In Section 6, we
discuss related work, and we conclude in Section 7.

2 Background

2.1 Neural Networks

A neural network consists of an input layer, an output layer, and one or more
intermediate layers called hidden layers. Each layer is a collection of nodes,
called neurons. Each neuron is connected to other neurons by one or more di-
rected edges. In a feedforward neural network, the neurons in the first layer
receive input data that sets their initial values. The remaining neurons calculate
their values using the weighted values of the neurons that they are connected to
through edges from the preceding layer (see Fig. 1). The output layer provides
the resulting value of the DNN for a given input.

Input #1 — .~> Output #1
Input #2 — S % — Output #2
Input #3 — %.*, Output #3
Input #4 — - — Output #4
Input #5 — .~> Output #5

Fig. 1. A fully connected, feedforward DNN with 5 input nodes (in orange), 5 output
nodes (in purple), and 4 hidden layers containing a total of 36 hidden nodes (in blue).
Each edge is associated with a weight value (not depicted).

! We intend to make our code publicly available with the final version of this paper.

There are many types of DNNs, which may differ in the way their neu-
ron values are computed. Typically, a neuron is evaluated by first computing
a weighted sum of the preceding layer’s neuron values according to the edge
weights, and then applying an activation function to this weighted sum [9]. We
focus here on the Rectified Linear Unit (ReLU) activation function [23], given as
ReLU(z) = max (0, z). Thus, if the weighted sum computation yields a positive
value, it is kept; and otherwise, it is replaced by zero.

More formally, given a DNN N, we use n to denote the number of layers
of N. We denote the number of nodes of layer ¢ by s;. Layers 1 and n are the
input and output layers, respectively. Layers 2,...,n — 1 are the hidden layers.
We denote the value of the j-th node of layer i by v; ;, and denote the column
vector [v;1,...,vis]T as Vi

Evaluating N is performed by calculating V,, for a given input assignment
V1. This is done by sequentially computing V; for i = 2,3, ..., n, each time using
the values of V;_; to compute weighted sums, and then applying the ReLU
activation functions. Specifically, layer ¢ (for ¢ > 1) is associated with a weight
matrix W; of size s; X s;_1 and a bias vector B; of size s;. If 7 is a hidden layer,
its values are given by V; = ReLU(W,V;_1 + B;), where the ReLUs are applied
element-wise; and the output layer is given by V,, = W,,V,,_; + B,, (ReLUs are
not applied). Without loss of generality, in the rest of the paper we assume that
all bias values are 0, and can be ignored. This rule is applied repeatedly once for
each layer, until V,, is eventually computed.

We will sometimes use the notation w(v; ;,vi+1,k) to refer to the entry of
W41 that represents the weight of the edge between neuron j of layer ¢ and
neuron k of layer i + 1. We will also refer to this edge as an outgoing edge for
v;,5, and as an incoming edge for vii1 .

As part of our abstraction framework, we will sometimes need to consider a
suffiz of a DNN, in which the first layers of the DNN are omitted. For 1 < ¢ < n,
we use N to denote the DNN comprised of layers 4,7+ 1,...,n of the original
network. The sizes and weights of the remaining layers are unchanged, and layer
i of N is treated as the input layer of NI,

Fig. 2 depicts a small neural network. The network has n = 3 layers, of sizes
s1 =1,s9 = 2 and s3 = 1. Its weights are w(v11,v21) = 1, w(v1,1,v2,2) = —1,
w(ve1,vs31) =1 and w(ve 2,v3,1) = 2. For input v1 1 = 3, node vs; evaluates to
3 and node v3 2 evaluates to 0, due to the ReLU activation function. The output
node v3 1 then evaluates to 3.

2.2 Neural Network Verification

DNN verification amounts to answering the following question: given a DNN V|
which maps input vector = to output vector y, and predicates P and @, does there
exist an input xg such that P(xg) and Q(yo) both hold, where yg = N(z¢)? In
other words, the verification process determines whether there exists a particular
input that meets the input criterion P, and that is mapped to an output that
meets the output criterion Q. We refer to (N, P, Q) as the verification query. As
is usual in verification, @ represents the negation of the desired property. Thus,

Input Hidden Output
layer layer layer

Y
V1,1 / \ V3,1
@

Fig. 2. A simple feedforward neural network.

if the query is unsatisfiable (UNSAT), the property holds; and if it is satisfiable
(SAT), then x(constitutes a counterexample to the property in question.

Different verification approaches may differ in (i) the kinds of neural net-
works they allow (specifically, the kinds of activation functions in use); (ii) the
kinds of input properties; and (7i) the kinds of output properties. For simplicity,
we focus on networks that employ the ReLU activation function. In addition,
our input properties will be conjunctions of linear constraints on the input val-
ues. Finally, we will assume that our networks have a single output node y, and
that the output property is y > ¢ for a given constant c. We stress that these
restrictions are for the sake of simplicity. Many properties of interest, including
those with arbitrary Boolean structure and involving multiple neurons, can be
reduced into the above single-output setting by adding a few neurons that encode
the Boolean structure [15,26]; see Fig 3 for an example. The number of neurons
to be added is typically negligible when compared to the size of the DNN. In
particular, this is true for the ACAS Xu family of benchmarks [15], and also
for adversarial robustness queries that use the L, or the L, norm as a distance
metric [4,10,16]. Additionally, other piecewise-linear activation functions, such
as max-pooling layers, can also be encoded using ReLUs [4].

Several techniques have been proposed for solving the aforementioned veri-
fication problem in recent years (Section 6 includes a brief overview). Our ab-
straction technique is designed to be compatible with most of these techniques,
by simplifying the network being verified, as we describe next.

3 Network Abstraction and Refinement

Because the complexity of verifying a neural network is strongly connected to
its size [15], our goal is to transform a verification query ¢; = (N, P, Q) into
query o = (N, P,@Q), such that the abstract network N is significantly smaller
than N (notice that properties P and @ remain unchanged). We will construct
N so that it is an over-approximation of N, meaning that if ¢y is UNSAT then
1 is also UNSAT. More specifically, since our DNNs have a single output, we can
regard N(x) and N(x) as real values for every input x. To guarantee that ¢
over-approximates ¢, we will make sure that for every z, N(z) < N(z); and
thus, N(z) < ¢ = N(x) < c. Because our output properties always have the
form N(z) > c, it is indeed the case that if oy is UNSAT, i.e. N(z) < c for all z,

—> Y3 —> Y3

Fig. 3. Reducing a complex property to the y > 0 form. For the network on the left
hand side, suppose we wish to examine the property y2» > y1 V y2 > y3, which is a
property that involves multiple outputs and includes a disjunction. We do this (right
hand side network) by adding two neurons, t1 and t2, such that ¢t1 = ReLU(y2 — y1)
and t2 = ReLU(y2 — y3). Thus, t1 > 0 if and only if the first disjunct, y2 > y1, holds;
and t2 > 0 if and only if the second disjunct, y2 > y3, holds. Finally, we add a neuron
z1 such that z1 = ¢1 + t2. It holds that z; > 0 if and only if ¢1 > 0V ¢2 > 0. Thus, we
have reduced the complex property into an equivalent property in the desired form.

then N(z) < c for all z and so ¢; is also UNSAT. We now propose a framework
for generating various Ns with this property.

3.1 Abstraction

We seek to define an abstraction operator that removes a single neuron from the
network, by merging it with another neuron. To do this, we will first transform
N into an equivalent network, whose neurons have properties that will facilitate
their merging. Equivalent here means that for every input vector, both networks
produce the exact same output. First, each hidden neuron v; ; of our transformed
network will be classified as either a pos neuron or a neg neuron. A neuron is
pos if all the weights on its outgoing edges are positive, and is neg if all those
weights are negative. Second, orthogonally to the pos/neg classification, each
hidden neuron will also be classified as either an inc neuron or a dec neuron.
v; j is an inc neuron of N if, when we look at Nl (where v; ; is an input neuron),
increasing the value of v; ; increases the value of the network’s output. Formally,
v;,; is inc if for every two input vectors x1 and zo where z1[k] = xo[k] for k # j
and x1[j] > w2[j], it holds that Nll(z;) > Nll(zy). A dec neuron is defined
symmetrically, so that decreasing the value of x[j] increases the output. We first
describe this transformation (an illustration of which appears in Fig. 4), and
later we explain how it fits into our abstraction framework.

Our first step is to transform NV into a new network, N’, in which every hidden
neuron is classified as pos or neg. This transformation is done by replacing each
hidden neuron v;; with two neurons, Uj, ; and v; ;, which are respectively pos
and dec. Both v;f ; an v, ; retain a copy of all incoming edges of the original
v; j; however, v;,r ; retains just the outgoing edges with positive weights, and v, ;
retains just those with negative weights. Outgoing edges with negative weights
are removed from UZ_ ; by setting their weights to 0, and the same is done for

outgoing edges with positive weights for v; ;- Formally, for every neuron v;_i p,

W' (Vi—1,p, U:j) = w(Vi—1,p, Vi), W' (Vi—1,p, /Uijj) = w(vi—1,p, Vi)

where w’ represents the weights in the new network N’. Also, for every neuron
Vit1,q

w(v;. 5, V; w(v; i, V; >0
w/('U:_j,Ui-i-l q) _ (R 2+1,q) (@7 ' z+17¢1) =
0 otherwise

and

L o <0
w/(vz_j7vi+1,q) = w(vigs Virra) w(vl’j’?lﬂ’q) -
0 otherwise

(see Fig. 4). This operation is performed once for every hidden neuron of N,
resulting in a network N’ that is roughly double the size of N. Observe that N’
is indeed equivalent to IV, i.e. their outputs are always identical.

2

i
) .%, . SN
oi@ie o0 gle © g:{:\ o
/ ~ i, 1;22 - 3 — (Y
.}./ \.\ A \? é./l
s

Fig. 4. Classifying neurons as pos/dec and inc/dec. In the initial network (left), the
neurons of the second hidden layer are already classified: T and ~ superscripts indicate
pos and neg neurons, respectively; the ? superscript and green background indicate
inc, and the P superscript and red background indicate dec. Classifying node v1 1
is done by first splitting it into two nodes vffl and v;; (middle). Both nodes have
identical incoming edges, but the outgoing edges of vi1,; are partitioned between them,
according to the sign of each edge’s weight. In the last network (right), vl 1 is split once
more, into an inc node with outgoing edges only to other inc nodes, and a dec node
with outgoing edges only to other dec nodes. Node v1,; is thus transformed into three
nodes, each of which can finally be classified as inc or dec. Notice that in the worst
case, each node is split into four nodes, although for v;,; three nodes were enough.

Our second step is to alter N’ further, into a new network N”, where every
hidden neuron is either inc or dec (in addition to already being pos or neg).
Generating N” from N’ is performed by traversing the layers of N’ backwards,
each time handling a single layer and possibly doubling its number of neurons:

— Initial step: the output layer has a single neuron, y. This neuron is an inc
node, because increasing its value will increase the network’s output value.
— Iterative step: observe layer i, and suppose the nodes of layer i + 1 have
already been partitioned into inc and dec nodes. Observe a neuron v+] in
layer ¢ which is marked pos (the case for neg is symmetrical). We replace

v, with two neurons U+’

+D -
ny ;5 and v; 7, which are inc and dec, respectively.

by

Both new neurons retain a copy of all incoming edges of v:rj, however, ’UZ+ ¥
D
retains only outgoing edges that lead to inc nodes, and v+j retains only
outgoing edges that lead to dec nodes. Thus, for every v;_1 , and vi41,q,

" +, I\ + " +,D\ +
W (Vim1,p v) =W Vit 0])s W (Vim0 1) = W (Vi p, v])

1o+) if s P
P w (vij,vH_Lq) if v;41,4 is inc
w (Uij S Vitl,q) = ’ .
’ 0 otherwise

"(vits, v if viq1,4 is d

04D w' (v, vig1,g) if i1, is dec
w’ (v 17 v) = '

1, +1,q9 .
0 otherwise

where w” represents the weights in the new network N”. We perform this
step for each neuron in layer i, resulting in neurons that are each classified
as either inc or dec.

To understand the intuition behind this classification, recall that by our assump-

tion all hidden nodes, including v ;» use the ReLU activation function and so

take on only non-negative values. Because U;’: ; is pos, all its outgoing edges have

positive weights, and so if its assignment was to increase (decrease), the assign-
ments of all nodes to which it is connected in the following layer would also
increase (decrease). Thus, we split v ;; in two, and make sure one copy, v fjl, is
only connected to nodes that need to increase (inc nodes), and that the other

copy, v;]’D is only connected to nodes that need to decrease (dec nodes). This
ensures that v ig T is itself inc, and that v j is dec. Also, both v+j1 and vj]D
remain pos nodes, because thelr outgoing edges all have positive weights.
When this procedure terminates, N” is equivalent to N’, and so also to N;
and N is double the size of N’, and four times the size of N. Both transformation
steps are only performed for hidden neurons, whereas the input and output
neurons remain unchanged. This is summarized by the following lemma:

Lemma 1. Any DNN N can be transformed into an equivalent network N
where each hidden neuron is pos or dec, and also inc or dec, by increasing its
number of neurons by a factor of at most 4.

Using Lemma 1, we can assume without loss of generality that the DNN
nodes in our input query ¢; are each marked as pos/neg and as inc/dec. We
are now ready to construct the over-approximation network N. We do this by
specifying an abstract operator that merges a pair of neurons in the network
(thus reducing network size by one), and can be applied multiple times. The only
restrictions are that the two neurons being merged need to be from the same
hidden layer, and must share the same pos/neg and inc/dec attributes. Conse-
quently, applying abstract to saturation will result in a network with at most
4 neurons in each hidden layer, which over-approximates the original network.
This, of course, would be an immense reduction in the number of neurons for
most reasonable input networks.

The abstract operator’s behavior depends on the attributes of the neurons
being merged. For simplicity, we will focus on the (pos,inc) case. Let v; 5, v; &
be two hidden neurons of layer ¢, both classified as (pos,inc). Because layer i
is hidden, we know that layers i 4+ 1 and ¢ — 1 are defined. Let v;_1 , and vi41,4
denote arbitrary neurons in the preceding and succeeding layer, respectively. We
construct a network N that is identical to N, except that: (1) nodes v;, j and v g
are removed and replaced with a new single node, v;4; and (ii) all edges that
touched nodes v; ; or v;;, are removed, and other edges are untouched. Finally,
we add new incoming and outgoing edges for the new node v; ; as follows:

— Incoming edges: W(vi—1,p, vi¢) = max{w(vi—1,p, Vi), W(Vi—1,p,Vik)}
— Outgoing edges: W(vi ¢, Vit1,q) = W(Vi 5, Vit1,q) + W(Vik, Vig1,q)

where @ represents the weights in the new network N. An illustrative example
appears in Fig. 5. Intuitively, this definition of abstract seeks to ensure that
the new node v; ; always contributes more to the network’s output than the two
original nodes v; ; and v; ;;, — so that the new network produces a larger output
than the original for every input. By the way we defined the incoming edges of
the new neuron v; ;, we are guaranteed that for every input x passed into both
N and N, the value assigned to v;; in N is greater than the values assigned to
both v; ; and v; 1, in the original network. This works to our advantage, because
v;; and v; ; were both inc — so increasing their values increases the output
value. By our definition of the outgoing edges, the values of any inc nodes in
layer i 4+ 1 increase in N compared to N, and those of any dec nodes decrease.
By definition, this means that the network’s overall output increases.

The abstraction operation for the (neg,inc) case is identical to the one de-
scribed above. For the remaining two cases, i.e. (pos,dec) and (neg,dec), the
max operator in the definition is replaced with a min.

The next lemma (proof omitted due to lack of space) justifies the use of our
abstraction step, and can be applied once per each application of abstract:

Lemma 2. Let N be derived from N by a single application of abstract. For
every x, it holds that N(z) > N(z).

3.2 Refinement

The aforementioned abstract operator reduces network size by merging neu-
rons, but at the cost of accuracy: whereas for some input x(the original network
returns N(zg) = 3, the over-approximation network N created by abstract
might return N(zg) = 5. If our goal is prove that it is never the case that
N(x) > 10, this over-approximation may be adequate: we can prove that always
N(z) < 10, and this will be enough. However, if our goal is to prove that it is
never the case that N(z) > 4, the over-approximation is inadequate: it is possi-
ble that the property holds for N, but because N(x¢) = 5 > 4, our verification
procedure will return zo as a spurious counterezample (a counterexample for
N that is not a counterexample for N). In order to handle this situation, we

S

ol/\

0@
-2

L

y = bR(x1 — 2x2) +
3R(4z1 — x2) + 4R(2z1 — 3x2) y = 8R(4x1 — x2) + 4R(2x1 — 3x2) y = 12R(4z; — x2)

Fig. 5. Using abstract to merge (pos,inc) nodes. Initially (left), the three nodes v1, v2
and vs are separate. Next (middle), abstract merges v1 and vz into a single node. For
the edge between x1 and the new abstract node we pick the weight 4, which is the
maximal weight among edges from x1 to v; and vs. Likewise, the edge between x2 and
the abstract node has weight —1. The outgoing edge from the abstract node to y has
weight 8, which is the sum of the weights of edges from v; and v to y. Next, abstract
is applied again to merge vs with the abstract node, and the weights are adjusted
accordingly (right). With every abstraction, the value of y (given as a formula at the
bottom of each DNN, where R represents the ReLU operator) increases. For example,
to see that 12R(4x1 — x2) > 8R(4x1 — x2) + 4R(2x1 — 3x2), it is enough to see that
4R(4x1 —x2) > 4R(2x1 —3x2), which holds because ReLU is a monotonically increasing
function and x1 and z2 are non-negative (being, themselves, the output of ReLU nodes).

define a refinement operator, refine, that is the inverse of abstract: it trans-
forms N into yet another over-approximation, N’, with the property that for
every x, N(z) < N'(z) < N(z). If N'(z¢) = 3.5, it might be a suitable over-
approximation for showing that never N(z) > 4. In this section we define the
refine operator, and in Section 4 we explain how to use abstract and refine
as part of a CEGAR-based verification scheme.

Recall that abstract merges together a couple of neurons that share the
same attributes. After a series of applications of abstract, each hidden layer i
of the resulting network can be regarded as a partitioning of hidden layer i of the
original network, where each partition contains original, concrete neurons that
share the same attributes. In the abstract network, each partition is represented
by a single, abstract neuron. The weights on the incoming and outgoing edges of
this abstract neuron are determined according to the definition of the abstract
operator. For example, in the case of an abstract neuron v that represents a set
of concrete neurons {vy, ..., v,} all with attributes (pos,inc), the weight of each
incoming edge to v is given by

w(u,v) = max(w(u,vy), ..., w(u,vy,))

where u represents a neuron that has not been abstracted yet, and w is the
weight function of the original network. The key point here is that the order of
abstract operations that merged v1, ..., v, does not matter — but rather, only

the fact that they are now grouped together determines the abstract network’s
weights. The following corollary, which is a direct result of Lemma 2, establishes
this connection between sequences of abstract applications and partitions:

Corollary 1. Let N be a DNN where each hidden neuron is labeled as pos/neg
and inc/dec, and let P be a partitioning of the hidden neurons of N, that only
groups together hidden neurons from the same layer that share the same labels.
Then N and P give rise to an abstract neural network N, which is obtained by
performing a series of abstract operations that group together neurons according
to the partitions of P. This N is an over-approzimation of N.

We now define a refine operation that is, in a sense, the inverse of abstract.
refine takes as input a DNN N that was generated from N via a sequence of
abstract operations, and splits a neuron from N in two. Formally, the operator
receives the original network N, the partitioning P, and a finer partition P’ that
is obtained from P by splitting a single class in two. The operator then returns
a new abstract network, N’, that is the abstraction of N according to P’.

Due to Corollary 1, and because N returned by refine corresponds to a
partition P’ of the hidden neurons of N, it is straightforward to show that N is
indeed an over-approximation of N. The other useful property that we require
is the following:

Lemma 3. Let N be an abstraction of N, and let N’ be a network obtained
Jrom N by applying a single refine step. Then for every input x it holds that
N(z) > N'(z) > N(z).

The second part of the inequality, N’(x) > N(z) holds because N’ is an
over-approximation of N (Corollary 1). The first part of the inequality, N(z) >
N'(z), follows from the fact that N(x) can be obtained from N’(z) by a single
application of abstract.

Of course, in practice, starting from the original N and applying a sequence
of abstract operations is a wasteful way of implementing refine. Instead, it is
possible to split an abstract neuron in two in a single step and examine just the
concrete neurons that are mapped to the two new abstract neurons to determine

the new edge weights.

4 A CEGAR-Based Approach

In Section 3 we defined the abstract operator that reduces network size at
the cost of reducing network accuracy, and its inverse refine operator that
increases network size and restores accuracy. Together with a black-box verifi-
cation procedure Verify that can dispatch queries of the form ¢ = (N, P, @),
these components now allow us to design an abstraction-refinement algorithm
for DNN verification, given as Alg. 1 (we assume that all hidden neurons in the
input network have already been marked pos/neg and inc/dec).

Because our over-approximation network N is obtained via applications of
abstract and refine, and because we assume the underlying Verify procedure

Algorithm 1 Abstraction-based DNN Verification(N, P, Q)

1: Use abstract to generate an initial over-approximation N of N
2: if Verify(N, P, Q) is UNSAT then
3: return UNSAT

4: else

5: Extract counterexample c

6: if cis a counterexample for N then
7 return SAT

8: else

9: Use refine to refine N into N’
10: N« N’

11: Goto step 2

12: end if

13: end if

is sound, Lemmas 2 and 3 guarantee the soundness of Alg. 1. Further, the al-
gorithm always terminates: this is the case because all the abstract steps are
performed first, followed by a sequence of refine steps. Because no additional
abstract operations are performed beyond Step 1, after finitely many refine
steps N will become identical to IV, at which point no spurious counterexample
will be found, and the algorithm will terminate with either SAT or UNSAT. Of
course, termination is only guaranteed when the underlying Verify procedure is
guaranteed to terminate.

There are two steps in the algorithm that we intentionally left ambiguous:
Step 1, where the initial over-approximation is computed, and Step 9, where the
current abstraction is refined due to the discovery of a spurious counterexample.
The motivation was to make Alg. 1 general, and allow it to be customized by
plugging in different heuristics for performing Steps 1 and 9, that may depend
on the problem at hand. Below we propose a few such heuristics.

4.1 Generating an Initial Abstraction

The most naive way to generate the initial abstraction is to apply the abstract
operator to saturation. As previously discussed, abstract can merge together
any pair of hidden neurons from a given layer that share the same attributes.
Since there are four possible attribute combinations, this will result in each hid-
den layer of the network having four neurons or fewer. However, for a reasonably
large DNN, we expect this abstraction to be very coarse, and so it might lead to
multiple rounds of refinement before a SAT or UNSAT answer can be reached.

A different heuristic for producing abstractions that may require fewer re-
finement steps is as follows. First, we select a finite set of input points, X =
{z1,...,z,}, all of which satisfy the input property P. These points can be gen-
erated randomly, or according to some coverage criterion of the input space. The
points of X are then used as indicators in estimating when the abstraction has
become too coarse: after every abstraction step, we check whether the property

still holds for x1,...,z,, and stop abstracting if this is not the case. The exact
technique appears in Alg. 2, which is used to perform Step 1 of Alg. 1.

Algorithm 2 Create Initial Abstraction(N, P, Q)

1: N« N -

2: while Vz € X. N(z) satisfies @ and there are still neurons that can be merged do
3: A< oo, bestPair + L

4 for every pair of hidden neurons v; j, v; , with identical attributes do
5 m <+ 0

6: for every node v;—1,, do

7: a < ’LT]('U»L;LP, ’Ui,j), b+ ’J](U»;fl,p, Ui7k)

8 if |a — b > m then

9: m < |a — b

10: end if

11: end for

12: if m < A then

13: A < m, bestPair < (v;, j, vik)

14: end if

15: end for

16: Use abstract to merge the nodes of bestPair, store the result in N

17: end while

18: return N

Another point that is address by Alg. 2, besides how many rounds of abstrac-
tion should be performed, is which pair of neurons should be merged in every
application of abstract. This, too, is determined heuristically. Since any pair
of neurons that we pick will result in the same reduction in network size, our
strategy is to prefer neurons that will result in a a more accurate approximation.
Inaccuracies are caused by the max and min operators within the abstract op-
erator: e.g., in the case of max , every pair of incoming edges with weights a, b are
replaced by a single edge with weight max (a,b). Our strategy here is to merge
the pair of neurons for which the mazimal value of |a — b| (over all incoming
edges with weights a and b) is minimal. Intuitively, this leads to max (a, b) being
close to both a and b — which, in turn, leads to an over-approximation network
that is smaller than the original, but is close to it weight-wise. We point out
that although repeatedly exploring all pairs (line 4) may appear costly, in our
experiments the time cost of this step was negligible compared to that of the
verification queries that followed. Still, if this step happens to become a bottle-
neck, it is possible to adjust the algorithm to heuristically sample just some of
the pairs, and pick the best pair among those considered — without harming
the algorithm’s soundness.

As a small example, consider the network depicted on the left hand side
of Fig. 5. This network has three pairs of neurons that can be merged using
abstract (any subset of {v1, v, v3}). Consider the pair v1, v3: the maximal value
of |a — b| for these neurons is max (|1 — 4)],[(—2) — (—1)|) = 3. For pair v1, vs,

the maximal value is 1; and for pair v, v3 the maximal value is 2. According to
the strategy described in Alg. 2, we would first choose to apply abstract on the
pair with the minimal maximal value, i.e. on the pair vy, v3.

4.2 Performing the Refinement Step

A refinement step is performed when a spurious counterexample x has been
found, indicating that the abstract network is too coarse. In other words, our
abstraction steps, and specifically the max and min operators that were used
to select edge weights for the abstract neurons, have resulted in the abstract
network’s output being too great for input x, and we now need to reduce it.
Thus, our refinement strategies are aimed at applying refine in a way that
will result in a significant reduction to the abstract network’s output. We note
that there may be multiple options for applying refine, on different nodes, such
that any of them would remove the spurious counterexample x from the abstract
network. In addition, it is not guaranteed that it is possible to remove = with
a single application of refine, and multiple consecutive applications may be
required.

One heuristic approach, which we refer to as weight-based refinement, is to
look for a concrete neuron v, currently mapped into an abstract neuron v, such
that the incoming weights of v and v differ significantly. This indicates that by
mapping v into v we have performed a coarse approximation, and that splitting
v away from ¥ may restore accuracy. This heuristic is formally defined in Alg. 3.
The algorithm simply traverses the original neurons, looks for the edge weight
that has changed the most as a result of the current abstraction, and then
performs refinement on the neuron at the end of that edge. As was the case with
Alg 2, if considering all possible nodes turns out to be too costly, it is possible
to adjust the algorithm to explore only some of the nodes, and pick the best one
among those considered — without jeopardizing the algorithm’s soundness.

Algorithm 3 Weight-Based Refinement(N, N)

1: bestNeuron <— L, m < 0
2: for each concrete neuron v; ; of N mapped into abstract neuron v; ;» of N do

3: for each concrete neuron v;_1,x of N mapped into abstract neuron v;_ x of N
do

4 if |w(vi,j, vie1,k) — @W(V; 47, Ui—1,7)| > m then

5 m < |w(vi,j,vi_1,k) 7w(@i,j’76i—1,k’)|

6: bestNeuron <« v; ;

7 end if

8: end for

9: end for

10: Use refine to split bestNeuron from its abstract neuron

As an example, let us use Alg. 3 to choose a refinement step for the right
hand side network of Fig. 5. Suppose vy is considered first. In the abstract

network, w(x1,v1) = 4 and w(x2,v7) = —1; whereas in the original network,
w(zy,v1) = 1 and w(xe,v;) = —2. Thus, the largest value m computed for v is
|w(z1,v1) — @(x1,v01)| = 3. This value of m is larger than the one computed for
v2 (0) and for vz (2), and so vy is selected for the refinement step. After this step
is performed, vo and v3 are still mapped to a single abstract neuron, whereas v,
is mapped to a separate neuron in the abstract network.

Weight-based refinement attempts to reduce the output value y by as much
as possible, but does not take into account the counterexample = that was dis-
covered by the verification procedure. Consider a case where abstract neuron v
is selected for refinement based on its incoming weights, but where o is actu-
ally assigned value 0 when the network is evaluated on counterexample x. By
performing this refinement step, we might not change the network’s output at
all for x. Intuitively, by focusing our refinements efforts on neurons that take
on small assignments in our input region of interest, we may be ignoring other
choices that could decrease the network’s output more significantly.

To address this situation, we propose to change Alg. 3 in a way that would
make it counterexample-guided. Specifically, we suggest to adjust lines 4 and 5
of Alg. 3, by multiplying the term |w(v; j, v;—1,%) —@(7; j7, Ti—1,x)| that appears
therein by the value of neuron v when the abstract network is evaluated for
counterexample x. This heuristic, which we refer to as counterexample-guided
refinement, takes into account both edge weights and the discovered counterex-
ample, and may ignore neurons that weight-based refinement might select if
these neurons are assigned small values.

5 Implementation and Evaluation

Our implementation of the abstraction-refinement framework includes modules
that read a DNN in the NNet format [14] and a property to be verified, create
an initial abstract DNN as described in Section 4, invoke a black-box verification
engine, and perform refinement as described in Section 4. The process terminates
when the underlying engine returns either UNSAT, or an assignment that is a
true counterexample for the original network. For experimentation purposes, we
integrated our framework with the Marabou DNN verification engine [17]. We
will make our implementation publicly available with the final version of this
paper.

Our experiments included verifying several properties of the 45 ACAS Xu
DNNs for airborne collision avoidance [14,15]. ACAS Xu is a system designed to
produce horizontal turning advisories for an unmanned aircraft (the ownship),
with the purpose of preventing a collision with another nearby aircraft (the in-
truder). The ACAS Xu system receive as input sensor readings, indicating the
location of the intruder relative to the ownship, the speeds of the two aircraft,
and their directions (see Fig. 6). Based on these readings, it selects one of 45
DNNSs, to which the readings are then passed as input. The selected DNN then
assigns scores to five output neurons, each representing a possible turning ad-
visory: strong left, weak left, strong right, weak right, or clear-of-conflict (the

latter indicating that it is safe to continue along the current trajectory). The
neuron with the lowest score represents the selected advisory. We verified sev-
eral properties of these DNNs based on the list of properties that appeared in [15]
— specifically focusing on properties that ensure that the DNNs always advise
clear-of-conflict for distant intruders, and that they are robust to (i.e., do not
change their advisories in the presence of) small input perturbations.

’ I

\\\Ownshi}z/
pie---

Fig. 6. (From [15]) An illustration of the sensor readings passed as input to the ACAS
Xu DNNE.

Each of the ACAS Xu DNNs has 300 hidden nodes spread across 6 hidden
layers, leading to 1200 neurons when the transformation from Section 3.1 is ap-
plied. In our experiments we set out to check whether the abstraction-based
approach could indeed prove properties of the ACAS Xu networks on abstract
networks that had significantly fewer neurons than the original ones. In addition,
we wished to compare the proposed approaches for generating initial abstrac-
tions (the naive approach versus Alg. 2) and the approaches for performing re-
finement steps (weight-based versus counterexample-guided), in order to identify
an optimal configuration for our tool. Finally, once the optimal configuration has
been identified, we used it to compare our tool’s performance to that of vanilla
Marabou. The results are described next.

Fig. 7 depicts a comparison of the two approaches for generating initial ab-
stractions: the naive abstraction scheme in which each abstract hidden layer
initially has 4 neurons (x axis), and the method described in Alg. 2 in which the
hidden layers are typically larger (y axis). Each experiment included running
our tool twice on the same benchmark (network and property), with an iden-
tical configuration except for the initial abstraction being used. The left plot
depicts the number of refinement steps required before the procedure termi-
nated. It shows that properties can indeed be proved on abstract networks that
are significantly smaller than the original — i.e., despite the initial 4x increase
in network size due to the preprocessing phase, the final abstract network on
which Alg. 1 could solve the query was usually substantially smaller than the
original network. Among the experiments that terminated, the final network on
which the property was shown to be SAT or UNSAT had an average size of 224
nodes, compared to the original 300 — a 25% reduction. The left plot also shows
that, in many cases, using Alg. 2 leads to fewer refinement steps than using the

naive scheme. The right plot indicates the total time (log-scale, in seconds, with
a 20-hour timeout) spent by Marabou solving verification queries as part of the
abstraction-refinement procedure. It shows that using the naive approach usually
leads to faster query solving times than using Alg. 2.

It is interesting to note that the superiority of the naive approach, which is
very clearly demonstrated by the runtime plot, is not so clearly reflected in the
number-of-queries plot. By analyzing the logs, we discovered that although the
number of refinement iterations required when using Alg. 2 is often smaller, the
Marabou queries that it generates are typically harder: a query generated using
Alg. 2 had an average solving time of 8430 seconds, versus an average solving
time of 3574 when using the naive approach. This means that although Marabou
is invoked fewer times, it takes longer to run. We speculate that the reason for
these queries being harder is that the naive approach generates queries that are
so coarse that (spurious) counterexamples are easier to find. We thus conclude
that the naive approach is superior to that of Alg. 2.

¥ %

% timeout experiment s X timeout experiment
12001 g finished experiment 7 @ finished experiment -
104 4

10! § o

#Refinement Steps: Alg 2
o
8
\
\\
Sum of Query Times: Alg 2
.
\
\

s 1074 -7

0 260 460 660 860 lOIOO 1260 14‘)0 1[‘)1 1(;2 1(‘]3 1[')4
#Refinement Steps: Naive Sum of Query Times: Naive

Fig. 7. Generating initial abstractions naively and using Alg. 2.

Next, we compared the weight-based and counterexample-guided approaches
for performing refinement steps discussed in Section 4.2. To do so we again ran
each benchmark through our tool twice, with identical configurations except for
the refinement scheme in use. The results appear in Fig. 8. As before, we com-
pared the number of required refinement steps (left plot) and the time required
by Marabou to solve the generated queries (right plot). The results indicate the
superiority of the counterexample-guided approach (x axis), especially in that it
leads to far fewer timeouts.

Based on the aforementioned experiments, we chose the naive approach for
generating initial abstractions and the counterexample-guided refinement strat-
egy as the optimal configuration of the tool for the ACAS Xu set of bench-
marks. We then used this configuration in comparing our abstraction-enhanced
Marabou to the vanilla version. The plot in Fig. 9 compares the total query

"
¥
S
S

93 %

% timeout experiment o

1 @ finished experiment -~

®* X

timeout experiment
finished experiment

L 104 4

=
o
=1
S

800 - e .
/” ’/‘
- 102 4 .
. oeny
e s %os e ;' .
. o
400 /’ .: - '!:.{' L4
P 278 e .
- 10! 4 ool ot ..

#Refinement Steps: Weight-Based
N o
8 8
\
\\
Sum of Query Times: Weight-Based
\

o

o0 ot 102 10° 10¢
Sum of Query Times: Counterexample-Guided

260 460 660 860 lOIOO 1260
#Refinement Steps: Counterexample-Guided

Fig. 8. Weight-based and counterexample-guided refinement steps.

solving time of vanilla Marabou (y axis) to that of our approach (x axis), on
90 difficult ACAS Xu benchmarks. We observe that the abstraction-enhanced
version significantly outperforms vanilla Marabou on average — often solving
queries orders-of-magnitude more quickly, and timing out on fewer benchmarks
(64 timeouts for the vanilla version, versus 51 for the abstraction-enhanced ver-
sion). These results clearly indicate the usefulness of combining our technique
with an existing verification engine, in order to boost its performance.

Next, we used our abstraction-enhanced Marabou to verify adversarial ro-
bustness properties [28]. Intuitively, an adversarial robustness property states
that slight input perturbations cannot cause sudden spikes in the network’s out-
put. This is desirable because such sudden spikes can lead to misclassification of
inputs. Unlike the ACAS Xu domain-specific properties [15], whose formulation
required input from human experts, adversarial robustness is a universal prop-
erty, desirable for every DNN. Consequently it is easier to formulate, and has
received much attention (e.g., [1,8,15,29]).

In order to formulate adversarial robustness properties for the ACAS Xu
networks, we randomly sampled the ACAS Xu DNNs to identify input points
where the selected output advisory, indicated by an output neuron y;, received
a much lower score than the second-best advisory, y; (recall that the advisory
with the lowest score is selected). For such an input point xo, we then posed the
verification query: does there exist a point x that is close to zg, but for which
y; receives a lower score than y;? Or, more formally:

([lo = wollL, <0) A (y5 < wi)

If this query is SAT then there exists an input whose distance to xg is at most
d, but for which the network assigns a better (lower) score to advisory y; than
to y;. However, if this query is UNSAT, no such point x exists. Because we select
point xy such that y; is initially much smaller than y;, we expect the query to
be UNSAT for small values of 4.

For each of the 45 ACAS Xu networks, we created robustness queries for 20
distinct input points — producing a total of 900 verification queries (we arbi-

Sum Query Times: Marabou

100 /‘,/" ————— y=x
g « timeout experiment
« finished experiment

10¢ 108

10! 102 10°
Sum Query Times: Marabou with Abstraction

Fig.9. Comparing the run time (in seconds, logscale) of vanilla Marabou and the
abstraction-enhanced version on the ACAS Xu benchmarks.

trarily set § = 0.1). For each of these queries we compared the runtime of vanilla
Marabou to that of our abstraction-enhanced version (with a 10-hour timeout).
The results are depicted in Fig. 10. Again, we can see that the abstraction-
enhanced version generally outperforms vanilla Marabou by a significant mar-
gin; specifically, the vanilla version timed out on 675 experiments, versus 470
timeouts for the abstraction-enhanced version.

6 Related Work

In recent years, multiple schemes have been proposed for the verification of
neural networks. These include SMT-based approaches, such as Marabou [17,18],
Reluplex [15], DLV [13] and others; approaches based on formulating the problem
as a mixed integer linear programming instance (e.g., [7,29,3,6]); approaches
with sophisticated deduction schemes such as symbolic interval propagation (the
ReluVal solver [30]) or abstract interpretation (the AI2 solver [8]); and others
(e.g., [21,24,31]). Our approach can be integrated with any sound and complete
solver as its engine; incomplete approaches could also be used and might afford
better performance, but could result in non-termination.

Some existing DNN verification techniques incorporate abstraction elements.
In [25], the authors use abstraction to over-approximate the Sigmoid activation
function with a collection of rectangles. If the abstract verification query they
produce is UNSAT, then so is the original. When a spurious counterexample is
found, an arbitrary refinement step is performed. The authors report limited
scalability, tackling only networks with a few dozen neurons. Abstraction tech-

Sum Query Times: Marabou

e
o o B N %t

wda 3. ot

y=X
timeout experiment
finished experiment

10¢

108

10° 10° 102 109
Sum Query Times: Marabou with Abstraction

Fig.10. Comparing the run time (seconds, logscale) of vanilla Marabou and the
abstraction-enhanced version on the ACAS Xu adversarial robustness properties.

niques also appear in the AI2 approach [8], but there it is the input property
and reachable regions that are over-approximated, as opposed to the DNN it-
self. Combining this kind of input-focused abstraction with our network-focused
abstraction is an interesting avenue for future work.

7 Conclusion

With deep neural networks becoming widespread and with their forthcoming
integration into safety-critical systems, there is an urgent need for scalable tech-
niques to verify and reason about them. However, the size of these networks
poses a serious challenge. Abstraction-based techniques can mitigate this diffi-
culty, by replacing networks with smaller versions thereof to be verified, without
compromising the soundness of the verification procedure. The abstraction-based
approach we have proposed here can provide a significant reduction in network
size, thus boosting the performance of existing verification technology.

In the future, we plan to continue this work along several axes. First, we
intend to investigate refinement heuristics that can split an abstract neuron
into two arbitrary sized neurons. In addition, we will investigate abstraction
schemes for networks that use additional activation functions, beyond ReLUs.
Finally, we plan to make our abstraction scheme parallelizable, allowing users to
use multiple worker nodes to explore different combinations of abstraction and
refinement steps, hopefully leading to faster convergence.

References

1.

10.

11.

12.

13.

14.

15.

O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi.
Measuring Neural Net Robustness with Constraints. In Proc. 30th Conf. on Neural
Information Processing Systems (NIPS), 2016.

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba.
End to End Learning for Self-Driving Cars, 2016. Technical Report. http:
//arxiv.org/abs/1604.07316.

R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and M. Kumar. Piecewise Linear Neural
Network Verification: A Comparative Study, 2017. Technical Report. https://
arxiv.org/abs/1711.00455v1.

N. Carlini, G. Katz, C. Barrett, and D. Dill. Provably Minimally-Distorted Adver-
sarial Examples, 2017. Technical Report. https://arxiv.org/abs/1709.10207.
E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided
Abstraction Refinement. In Proc. 12th Int. Conf. on Computer Aided Verification
(CAV), pages 154-169, 2010.

S. Dutta, S. Jha, S. Sanakaranarayanan, and A. Tiwari. Output Range Analysis for
Deep Neural Networks. In Proc. 10th NASA Formal Methods Symposium (NFM),
pages 121-138, 2018.

R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Net-
works. In Proc. 15th Int. Symp. on Automated Technology for Verification and
Analysis (ATVA), pages 269-286, 2017.

T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri, and
M. Vechev. AI2: Safety and Robustness Certification of Neural Networks with
Abstract Interpretation. In Proc. 39th IEEE Symposium on Security and Privacy
(SEP), 2018.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

D. Gopinath, G. Katz, C. Pasareanu, and C. Barrett. DeepSafe: A Data-driven
Approach for Checking Adversarial Robustness in Neural Networks. In Proc. 16th.
Int. Symp. on on Automated Technology for Verification and Analysis (ATVA),
pages 3-19, 2018.

J. Gottschlich, A. Solar-Lezama, N. Tatbul, M. Carbin, M. Rinard, R. Barzilay,
S. Amarasinghe, J. Tenenbaum, and T. Mattson. The Three Pillars of Machine
Programming. In Proc. 2nd ACM SIGPLAN Int. Workshop on Machine Learning
and Programming Languages (MALP), pages 69-80, 2018.

G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. Sainath, and B. Kingsbury. Deep Neural Networks for
Acoustic Modeling in Speech Recognition: The Shared Views of Four Research
Groups. IEEFE Signal Processing Magazine, 29(6):82-97, 2012.

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification of Deep
Neural Networks. In Proc. 29th Int. Conf. on Computer Aided Verification (CAV),
pages 3-29, 2017.

K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer. Policy Compression
for Aircraft Collision Avoidance Systems. In Proc. 85th Digital Avionics Systems
Conf. (DASC), pages 1-10, 2016.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An Efficient
SMT Solver for Verifying Deep Neural Networks. In Proc. 29th Int. Conf. on
Computer Aided Verification (CAV), pages 97-117, 2017.

http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1711.00455v1
https://arxiv.org/abs/1711.00455v1
https://arxiv.org/abs/1709.10207

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Towards Proving
the Adversarial Robustness of Deep Neural Networks. In Proc. 1st Workshop on
Formal Verification of Autonomous Vehicles (FVAV), pages 19-26, 2017.

G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor,
H. Wu, A. Zelji¢, D. Dill, M. Kochenderfer, and C. Barrett. The Marabou Frame-
work for Verification and Analysis of Deep Neural Networks. In Proc. 81st Int.
Conf. on Computer Aided Verification (CAV), 2019. To appear.

Y. Kazak, C. Barrett, G. Katz, and M. Schapira. Verifying Deep-RL-Driven Sys-
tems. In Proc. 1st ACM SIGCOMM Workshop on Network Meets AI & ML (Ne-
tAI), 2019.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet Classification with Deep
Convolutional Neural Networks. Advances in Neural Information Processing Sys-
tems, pages 1097-1105, 2012.

A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial Examples in the Physical
World, 2016. Technical Report. http://arxiv.org/abs/1607.02533.

A. Lomuscio and L. Maganti. An Approach to Reachability Analysis for Feed-
Forward ReLU Neural Networks, 2017. Technical Report. https://arxiv.org/
abs/1706.07351.

H. Mao, R. Netravali, and M. Alizadeh. Neural Adaptive Video Streaming with
Pensieve. In Proc. Conf. of the ACM Special Interest Group on Data Communica-
tion (SIGCOMM), pages 197-210, 2017.

V. Nair and G. Hinton. Rectified Linear Units Improve Restricted Boltzmann
Machines. In Proc. 27th Int. Conf. on Machine Learning (ICML), pages 807-814,
2010.

N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh. Verifying
Properties of Binarized Deep Neural Networks, 2017. Technical Report. http:
//arxiv.org/abs/1709.06662.

L. Pulina and A. Tacchella. An Abstraction-Refinement Approach to Verifica-
tion of Artificial Neural Networks. In Proc. 22nd Int. Conf. on Computer Aided
Verification (CAV), pages 243-257, 2010.

W. Ruan, X. Huang, and M. Kwiatkowska. Reachability Analysis of Deep Neural
Networks with Provable Guarantees. In Proc. 27th Int. Joing Conf. on Artificial
Intelligence (IJACI), pages 2651-2659, 2018.

D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, and S. Dieleman.
Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature,
529(7587):484-489, 2016.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing Properties of Neural Networks, 2013. Technical Report.
http://arxiv.org/abs/1312.6199.

V. Tjeng, K. Xiao, and R. Tedrake. Evaluating Robustness of Neural Networks with
Mixed Integer Programming. In Proc. 7th Int. Conf. on Learning Representations
(ICLR), 2019.

S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security Analysis
of Neural Networks using Symbolic Intervals. In Proc. 27th USENIX Security
Symposium, 2018.

W. Xiang, H.-D. Tran, and T. Johnson. Output Reachable Set Estimation and Ver-
ification for Multilayer Neural Networks. IEEE Transactions on Neural Networks
and Learning Systems (TNNLS), 99:1-7, 2018.

http://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1706.07351
https://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1312.6199

Simplifying Neural Networks using Formal
Verification

Sumathi Gokulanathan®, Alexander Feldsher!', Adi Malca!, Clark Barrett?,
and Guy Katz!(®)

! The Hebrew University of Jerusalem, Israel
{sumathi.giokolanat, feld, adimalca, guykatz}@cs.huji.ac.il
2 barrett@cs.stanford.edu

Abstract. Deep neural network (DNN) verification is an emerging field,
with diverse verification engines quickly becoming available. Demonstrat-
ing the effectiveness of these engines on real-world DNNs is an important
step towards their wider adoption. We present a tool that can leverage
existing verification engines in performing a novel application: neural net-
work simplification, through the reduction of the size of a DNN without
harming its accuracy. We report on the work-flow of the simplification
process, and demonstrate its potential significance and applicability on
a family of real-world DNNs for aircraft collision avoidance, whose sizes
we were able to reduce by as much as 10%.

Keywords: Deep Neural Networks, Simplification, Verification, Marabou

1 Introduction

Deep neural networks (DNNs) are revolutionizing the way complex software is
produced, obtaining unprecedented results in domains such as image recogni-
tion [28], natural language processing [5], and game playing [27]. There is now
even a trend of using DNNs as controllers in autonomous cars and unmanned
aircraft [2}/18]. With DNNs becoming prevalent, it is highly important to develop
automatic techniques to assist in creating, maintaining and adjusting them.

As DNNs are used in tackling increasingly complex tasks, their sizes (i.e.,
number of neurons) are also increasing — to a point where modern DNNs can
have millions of neurons [13]. DNN size is thus becoming a liability, as deploy-
ing larger networks takes up more space, increases energy consumption, and
prolongs response times. Network size can even become a limiting factor in sit-
uations where system resources are scarce. For example, consider the ACAS Xu
airborne collision avoidance system for unmanned aircraft, which is currently
being developed by the Federal Aviation Administration [18]. This is a highly
safety-critical system, for which a DNN-based implementation is being consid-
ered |18]. Because this system will be mounted on actual drones with limited
memory, efforts are being made to reduce the sizes of the ACAS Xu DNNs as
much as possible, without harming their accuracy [17}/18].

Most work to date on DNN simplification uses various heuristics, and does
not provide formal guarantees about the simplified network’s resemblance to
the original. A common approach is to start with a large network, and reduce
its size by removing some of its components (i.e., neurons and edges) [12,|15].
The parts to be removed from the network are determined heuristically, and
network accuracy may be harmed, sometimes requiring additional training after
the simplification process has been performed [12].

Here, we propose a novel simplification technique that harnesses recent ad-
vances in DNN verification (e.g., [91932]). Using verification queries, we propose
to identify components of the network that never affect its output. These com-
ponents can be safely removed, creating a smaller network that is completely
equivalent to the original. We empirically demonstrate that many such remov-
able components exist in networks of interest.

We implement our technique in a proof-of-concept tool, called NNSimplify.
The tool uses the following work-flow: (i) it performs lightweight simulations
to identify parts of the DNN that are candidates for removal; (ii) it invokes
an underlying verification engine to dispatch queries that determine which of
those parts can indeed be removed without affecting the network’s outputs; and
(iii) it constructs the simplified network, which is equivalent to the original. A
major benefit of the proposed verification-based simplification is that it does not
require any retraining of the simplified network, which may be expensive.

Our implementation of NNSimplify (available online [10]) can use existing
DNN verification tools as a backend. For the evaluation reported here, we used
the recently published Marabou framework [21] as the underlying verification
engine. We evaluated our approach on the ACAS Xu family of DNNs for airborne
collision avoidance [18], and were able to reduce the sizes of these DNNs by up
to 10% — a highly significant reduction for systems where resources are scarce.

The rest of the paper is organized as follows. In Section [2] we provide a
brief background on DNNs and their verification and simplification. Next, we
describe our verification-based approach to simplification in Section |3 followed
by an evaluation in Section [d] We then conclude in Section

2 Background: DNNs, Verification and Simplification

DNNs are comprised of an input layer, an output layer, and multiple hidden lay-
ers in between. A layer is comprised of multiple nodes (neurons), each connected
to nodes from the preceding layer using a predetermined set of weights (see
Fig. . By assigning values to inputs and then feeding them forward through
the network, values for each layer can be computed from the values of the pre-
vious layer, finally resulting in values for the outputs.

As DNNs are increasingly used in safety-critical applications (e.g., [2,/18]),
there is a surge of interest in verification methods that can provide formal guaran-
tees about DNN behavior. A DNN verification query consists of a neural network
and a property to be checked; and it results in either a formal guarantee that
the network satisfies the property, or a concrete input for which the property is

Input Hidden Output
layer layer layer

@
o @ .

V1

Fig.1: A small neural network with 2 hidden nodes in one hidden layer. Weights
are denoted over the edges. Hidden node values are typically determined by
computing a weighted sum according to the weights, and then applying a non-
linear activation function to the result.

violated (a counter-example). Verification queries can encode various properties
about DNNs; e.g., that slight perturbations to a network’s inputs do not affect
its output, and that it is thus robust to adversarial perturbations .
Recently, there has been significant progress on DNN verification tools that
can dispatch such queries (see a recent survey) Some of the proposed ap-
proaches for DNN verification include the use of specialized SMT solvers
, the use of LP and MILP solvers , symbolic interval propagation ,

abstract interpretation @7 and many others (e.g., |§|,) This new
technology has been applied in a variety of contexts, such as collision avoid-

ance , adversarial robustness , hybrid systems , and computer
networks . Although DNN verification technology is improving rapidly, scal-
ability remains a major limitation of existing approaches. It has been shown
that a common variant of the DNN verification problem is NP-complete, and
becomes exponentially harder as the network size increases .

In recent years, enormous DNNs have been appearing in order to tackle in-
creasingly complex tasks — to a point where DNN size is becoming a liability,
because large networks take longer to train and even to evaluate when deployed.
Techniques for neural network minimization and simplification have thus started
to emerge: typically, these take an initial, large network, and reduce its size by
removing some of its components . The pruning phase involves the removal of
edges from the network. The selection of which edges to remove is done heuristi-
cally, often by selecting edges that have very small weights, because these edges
are less likely to significantly affect the network’s outputs. If all edges connect-
ing a node to the preceding layer or to the succeeding layer are removed, then
the node itself can be removed. After the pruning phase, the reduced network is

retrained .

3 Simplification using Verification

Despite the demonstrated usefulness of pruning-based DNN simplification
, heuristic-based approaches might miss removable edges, if these edges do

not have particularly small weights. However, such edges can be identified using
verification. For example, consider the network shown in Fig. 2} As all edge
weights have identical magnitudes, none of them would be pruned by a heuristic-
based approach. However, using a verification engine, it is possible to check the
property: “does there exist an input for which v4 takes a non-zero value?”. If the
verification tool answers “no”, as is the case for the network in Fig. 2 (because
v4 = vy — v3 and vy = v3), then we are guaranteed that v, is always assigned
0, regardless of the input. In turn, this means that v, can never affect nodes in
subsequent layers. In this case, v4 and all its edges can be safely removed from
the network (rendering the network’s output constant). Due to the soundness of
the verification process, we are guaranteed that the simplified DNN is completely
equivalent to the original DNN, and thus no retraining is required.

/1)‘\)‘—> Vs

Fig. 2: Using verification, we can discover that node vy can safely be removed
from the network.

Using verification to identify nodes that are always assigned 0 for every pos-
sible input, and can thus be removed, is the core of our technique. However,
because verification is costly, posing this query for every node of the DNN might
take a long time. To mitigate this difficulty, we propose the following work-flow:

1. Use lightweight simulations to identify nodes that are candidates for removal.
Initially, all hidden nodes are such candidates. We then evaluate the network
for random input values, and remove from the list of candidates any hidden
node that is assigned a non-zero value for some input. With each simulation,
the number of candidates for removal decreases.

2. For each remaining candidate node v, we create a separate verification query
stating that v # 0, and use the underlying verification engine to dispatch
it. If we get an UNSAT answer, we mark node v for removal. The candidates
are explored in a layer-by-layer order, which allows us to only examine a
part of the DNN for every query. For example, when addressing a candidate
in layer #2, we do not encode layers #3 and on as part of our verification
query, as a node’s assignment can only be affected by nodes in preceding
layers. Because verifying smaller networks is generally easier, this layer-by-
layer approach accelerates the process as a whole. In addition, this process
naturally lends itself to parallelization, by running each verification query
on a separate machine.

3. Finally, we construct the simplified network, in which the nodes marked for
removal and all their incoming and outgoing edges are deleted. We can also

remove any nodes that subsequently become irrelevant due to the removal
of all of their incoming or outgoing edges (e.g., for the DNN in Fig. 2, after
removing vy we can also remove vy and vs, as neither has any remaining
outgoing edges).

We note that our technique can be extended to simplify DNNs in additional
ways, by using different verification queries. For example, it can identify separate
nodes that are always assigned identical, non-zero values (duplicates) and unify
them, thus reducing the overall number of nodes. It can also identify and remove
nodes that can be expressed as linear combinations of other nodes.

4 Evaluation

Our proof-of-concept implementation of the approach, called NNSimplify, is com-
prised of three Python modules, one for performing each of the aforementioned
steps. The tool is general, in two ways: (1) it can be applied to simplify any
DNN,; regardless of its application domain; and (2) it can use any DNN verifica-
tion engine as a backend, benefiting from any future improvement in verification
technology. For our experiments we used the Marabou [21] verification engine.
In practice, it is required that the DNN in question be supported by the back-
end verification engine — for example, some engines may not support certain
network topologies. Additionally, the DNN needs to be provided in a format sup-
ported by NNSimplify; currently, the tool supports the NNet format |16], and
we plan to extend it to additional formats. The tool, additional documentation,
and all the benchmarks reported in this section are available online [10].

We evaluated NNSimplify on the ACAS Xu family of DNNs for airborne
collision avoidance [18]. This set contains 45 DNNs, each with 5 input neurons,
5 output neurons, and 300 hidden neurons spread across 6 hidden layers. The
ACAS Xu networks are fully connected, and use the ReLLU activation function
in each of their hidden nodes — and are thus supported by Marabou.

For each of the 45 ACAS Xu DNNs, we ran the first Python module of
NNSimplify (random simulations), resulting in a list of candidate nodes for re-
moval. For each DNN we performed 20000 simulations, and this narrowed down
the list of nodes that are candidates for removal to about 7% of all hidden nodes
(see Fig. [3)). The simulations were performed on points sampled uniformly at
random, although other distributions could of course be used.

Next, for each candidate for removal we ran the second Python module,
which takes as input a DNN and a node v that is a candidate for removal. This
module constructs a temporary, smaller DNN, where the candidate node v is the
only output node (subsequent layers are omitted). These temporary DNNs were
then passed to the underlying verification engine, with the query v # 0. Here,
we encountered the following issue: the Marabou framework, like many linear-
programming based tools, does not provide a way to directly specify that v # 0,
but rather only to state that v > ¢ for some € > 0 (we assume all hidden nodes
are, by definition, never negative, which is the case for the ACAS Xu DNNg).

250
[]
200 PS

150 | %
100
50

1 100 10000

Number of Simulations (logscale)

Number of Candidate
Nodes

Fig.3: Using simulation to identify nodes that are candidates for removal, on
one ACAS Xu network.

We experimented with various values of ¢ (see Fig. E[), and concluded that the
choice of € has very little effect on the outcome of the experiment — i.e., nodes
tend to either be obsolete, or take on large values. The set of removed nodes
was almost identical in all experiments, with minor differences due to different
queries timing out for different values of ¢.

15

13
1 I I

0.00001 0.0001 0.001 0.01 0.1

=

Number of removed nodes

[l S I V) B N B Ve

Value of €

Fig.4: Number of removed nodes as a function of the value of €, on one of the
ACAS Xu networks.

Finally, we ran the third Python module that uses the results of the previous
steps to construct the simplified network.

We performed this process for each of the 45 DNNs. We ran the experiments
on machines with Intel Xeon E5-2670 CPUs (2.60GHz) and 8GB of memory, and
used € = 0.01. Each verification query was given a 4-hour timeout. Out of 1069
verification queries (1 per candidate node), 535 were UNSAT (node marked for

removal), 15 were SAT, and 519 timed out (node not marked for removal). Thus,
on average, 4% of the nodes were marked for removal (535 nodes out of 13500).
Fig. [5] depicts their distribution across the 45 DNNs. In most networks, between
11 and 15 nodes (out of 300) could be removed; but for a few networks, this
number was higher. For one of the networks we discovered 29 neurons that could
be removed — approximately 10% of that network’s total number of neurons.

N
(%]

N
o

[uny
(%)
I

w
1

Number of Networks
o S

0-5 6-10 11-15 16-20 21-25 26-30

Number of Removed Nodes

Fig. 5: Total number of removed nodes in the ACAS Xu networks.

5 Conclusion

DNN verification is an emerging field, and we are just now beginning to tap
its potential in assisting engineers in DNN development. We presented here the
NNSimplify tool, which uses black-box verification engines to simplify neural net-
works. We demonstrated that this approach can lead to a substantial reduction
in DNN size. Although our experiments show that the tool is already applicable
to real-world DNNs, its scalability is limited by the scalability of its underly-
ing verification engine; but as the scalability of verification technology improves,
that limitation will diminish. In the future, we plan to extend this work along
several axes. First, we intend to explore additional verification queries, which
would allow to simplify DNNs in more sophisticated ways — for example by
revealing that some neurons can be expressed as linear combinations of other
neurons, or that some neurons are always assigned identical values and can be
merged. In addition, we plan to investigate more aggressive simplification steps,
which may change the DNN’s output, while using verification to ensure that
these changes remain within acceptable bounds. Finally, we intend to apply the
technique to additional real-world DNNs and case studies.

Acknowledgements. This project was partially supported by grants from
the Binational Science Foundation (2017662), the Israel Science Foundation
(683/18), and the National Science Foundation (1814369).

References

1.

10.

11.

12.

13.

14.

15.

O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi.
Measuring Neural Net Robustness with Constraints. In Proc. 30th Conf. on Neural
Information Processing Systems (NIPS), 2016.

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and
K. Zieba. End to End Learning for Self-Driving Cars, 2016. Technical Report.
http://arxiv.org/abs/1604.07316.

R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and M. Kumar. Piecewise Linear
Neural Network Verification: A Comparative Study, 2017. Technical Report.
https://arxiv.org/abs/1711.00455v1.

N. Carlini, G. Katz, C. Barrett, and D. Dill. Provably Minimally-Distorted Ad-
versarial Examples, 2017. Technical Report. https://arxiv.org/abs/1709.10207.
R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.
Natural Language Processing (Almost) from Scratch. Journal of Machine Learning
Research (JMLR), 12:2493-2537, 2011.

S. Dutta, S. Jha, S. Sanakaranarayanan, and A. Tiwari. Output Range Analysis for
Deep Neural Networks. In Proc. 10th NASA Formal Methods Symposium (NFM),
pages 121-138, 2018.

R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Net-
works. In Proc. 15th Int. Symp. on Automated Technology for Verification and
Analysis (ATVA), pages 269286, 2017.

Y. Elboher, J. Gottschlich, and G. Katz. An Abstraction-Based
Framework for Neural Network Verification, 2019. Technical Report.
http://arxiv.org/abs/1910.14574.

T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri, and
M. Vechev. AI2: Safety and Robustness Certification of Neural Networks with
Abstract Interpretation. In Proc. 39th IEEE Symposium on Security and Privacy
(SEP), 2018.

S. Gokulanathan, A. Feldsher, A. Malca, C. Barrett, and G. Katz. The
NNSimplify Code, 2020. https://drive.google.com/open?id=19TbPS7P9fo-
2tRX08ENnggLY1LxxPCd1.

D. Gopinath, G. Katz, C. Péasareanu, and C. Barrett. DeepSafe: A Data-driven
Approach for Checking Adversarial Robustness in Neural Networks. In Proc. 16th.
Int. Symp. on on Automated Technology for Verification and Analysis (ATVA),
pages 3—19, 2018.

S. Han, H. Mao, and W. Dally. Deep Compression: Compressing Deep Neural Net-
works with Pruning, Trained Quantization and Huffman Coding, 2015. Technical
Report. http://arxiv.org/abs/1510.00149.

A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. MobileNets: Efficient Convolutional Neu-
ral Networks for Mobile Vision Applications, 2017. Technical Report.
http://arxiv.org/abs/1704.04861.

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification of Deep
Neural Networks. In Proc. 29th Int. Conf. on Computer Aided Verification (CAV),
pages 3—29, 2017.

F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. Dally, and K. Keutzer.
SqueezeNet: AlexNet-level Accuracy with 50x Fewer Parameters and < 0.5MB
Model Size, 2016. Technical Report. http://arxiv.org/abs/1602.07360.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

K. Julian. NNet Format, 2018. https://github.com/sisl/NNet.

K. Julian, M. Kochenderfer, and M. Owen. Deep Neural Network Compression for
Aircraft Collision Avoidance Systems. Journal of Guidance, Control, and Dynam-
ics, 42(3):598—-608, 2019.

K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer. Policy Compression
for Aircraft Collision Avoidance Systems. In Proc. 35th Digital Avionics Systems
Conf. (DASC), pages 1-10, 2016.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An Efficient
SMT Solver for Verifying Deep Neural Networks. In Proc. 29th Int. Conf. on
Computer Aided Verification (CAV), pages 97-117, 2017.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Towards Proving
the Adversarial Robustness of Deep Neural Networks. In Proc. 1st Workshop on
Formal Verification of Autonomous Vehicles (FVAV), pages 19-26, 2017.

G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor,
H. Wu, A. Zelji¢, D. Dill, M. Kochenderfer, and C. Barrett. The Marabou Frame-
work for Verification and Analysis of Deep Neural Networks. In Proc. 81st Int.
Conf. on Computer Aided Verification (CAV), pages 443-452, 2019.

Y. Kazak, C. Barrett, G. Katz, and M. Schapira. Verifying Deep-RL-Driven Sys-
tems. In Proc. 1st ACM SIGCOMM Workshop on Network Meets AI & ML (Ne-
tAI), pages 83-89, 2019.

L. Kuper, G. Katz, J. Gottschlich, K. Julian, C. Barrett, and M. Kochenderfer.
Toward Scalable Verification for Safety-Critical Deep Networks, 2018. Technical
Report. https://arxiv.org/abs/1801.05950.

C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. Kochenderfer. Al-
gorithms for Verifying Deep Neural Networks, 2019. Technical Report.
http://arxiv.org/abs/1903.06758.

A. Lomuscio and L. Maganti. An Approach to Reachability Analy-
sis for Feed-Forward ReLU Neural Networks, 2017. Technical Report.
http://arxiv.org/abs/1706.07351.

N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh. Ver-
ifying Properties of Binarized Deep Neural Networks, 2017. Technical Report.
http://arxiv.org/abs/1709.06662.

D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, and S. Dieleman.
Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature,
529(7587):484-489, 2016.

K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition, 2014. Technical Report. http://arxiv.org/abs/1409.1556.

X. Sun, H. Khedr, and Y. Shoukry. Formal Verification of Neural Network Con-
trolled Autonomous Systems. In Proc. 22nd ACM Int. Conf. on Hybrid Systems:
Computation and Control (HSCC), pages 147-156, 2019.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing Properties of Neural Networks, 2013. Technical Report.
http://arxiv.org/abs/1312.6199.

V. Tjeng, K. Xijao, and R. Tedrake. Evaluating Robustness of Neural Networks with
Mixed Integer Programming. In Proc. 7th Int. Conf. on Learning Representations
(ICLR), 2019.

S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security Anal-
ysis of Neural Networks using Symbolic Intervals, 2018. Technical Report.
http://arxiv.org/abs/1804.10829.

NeVer 2.0: Learning, Verification and Repair
of Deep Neural Networks

Dario Guidotti!, Luca Pulina?, and Armando Tacchellal

! University of Genoa, Italy
2 University of Sassari, Italy
dario.guidotti@edu.unige.it,
lpulina@uniss.it, armando.tacchella@unige.it

Abstract. In this work we present an early prototype of NEVER 2.0,
a new system for automated synthesis and analysis of deep neural net-
works. NEVER 2.0 borrows its design philosophy from NEVER, the first
package that integrated learning, automated verification and repair of
(shallow) neural networks in a single tool. The goal of NEVER 2.0 is to
provide a similar integration for deep networks by leveraging a selection
of state-of-the-art learning frameworks and integrating them with veri-
fication algorithms to ease the scalability challenge and make repair of
faulty networks possible.

Keywords: Deep Neural Networks - Network Pruning - Network Veri-
fication.

1 Introduction

Adoption and successful application of deep neural networks (DNNs) in various
domains have made them one of the most popular machine-learned models to
date — see, e.g., [27] on image classification, [35] on speech recognition, and [15]
for the general principles and a catalog of success stories. Despite the impressive
progress that the learning community has made with the adoption of DNNs, it
is well known that their application in safety- or security-sensitive contexts is
not yet hassle-free. From their well-known sensitivity to adversarial perturba-
tions [26, 6], i.e., minimal changes to correctly classified input data that cause a
network to respond in unexpected and incorrect ways, to other less-investigated,
but possibly significant properties — see, e.g., [18] for a catalog — the need for
tools to analyze and possibly repair DNNs is strong.

As witnessed by an extensive survey [10] of more than 200 recent papers,
the response from the scientific community has been equally strong. As a result,
many algorithms have been proposed for verification of neural networks and tools
implementing them have been made available. Some examples of well-known and
fairly mature verification tools are Marabou [13], an SMT-based tool that an-
swers queries regarding the properties of a DNN by transforming the queries into
constraint satisfiability problems; ERAN [25], a robustness analyzer based on
abstract interpretation and MIPVerify [28], another robustness analyzer based

2 Guidotti et al.

on mixed integer programming (MIP). Other widely-known verification tools
are Neurify [31], a robustness analyzer based on symbolic interval analysis and
linear relaxation, NNV [30], a tool implementing different methods for reacha-
bility analysis, Sherlock [4], an output range analysis tool and NSVerify [2], also
for reachability analysis. A number of verification methodologies — without a
corresponding tool — is also available like [32], a game based methodology for
evaluating pointwise robustness of neural networks in safety-critical applications.
Most of the above-mentioned tools and methodologies work only for feedforward
fully-connected neural networks with ReLU activation functions, with some of
them featuring verification algorithms for convolutional neural networks with
different kinds of activation function. To the best of our knowledge, current
state-of-the-art tools are restricted to verification/analysis tasks, in some cases
they are limited to specific network architectures and they might prove difficult
to use for the non-initiated.

In this work we present an early prototype of NEVER 2.0, a new system that
aims to bridge the gap between learning and verification of DNNs and solve some
of the above mentioned issues. NEVER 2.0 borrows its design philosophy from
NEVER [22], the first tool for automated learning, analysis and repair of neural
networks. NEVER was designed to deal with multilayer perceptrons (MLPs) and
its core was an abstraction-refinement mechanism described in [21,23]. As a
system, one peculiar aspect of NEVER was that it included learning capabilities
through the SHARK [11] library. Concerning the verification part, NEVER could
utilize any solver integrating Boolean reasoning and linear arithmetic constraint
solving — HYSAT [5] at the time. A further peculiarity of the approach was that
NEVER could leverage abstract counterexamples to (try to) repair the MLP, i.e.,
retrain it to eliminate the causes of misbehaviour.

Our goal for NEVER 2.0 is to provide the same features of NEVER, but in
an updated package that has the following features:

— Loading of datasets, trained and untrained models provided in a variety
of formats; currently NEVER 2.0 supports directly popular datasets, e.g.,
MNIST [16] and Fashion MNIST [33], but support for further datasets can
be added through a common interface; models (either trained or not) can
be supplied to NEVER 2.0 using ONNX? and PyTorcu* [20] formats —
TENSORFLOW?® [1] support is under development.

— Training of DNNs through state-of-the-art frameworks; currently NEVER
2.0 is based on PYTORCH, but further extensions are planned to handle
different kinds of learning models (e.g., kernel-based machines) that are not
handled natively by PYTORCH, or to leverage specific capabilities of other
learning frameworks.

— Manipulation of DNNs including, but not limited to, pruning [24], quanti-
zation [34], and transfer learning [29]; currently NEVER 2.0 builds on Py-

3 https://onnx.ai/
* https://pytorch.org/
® https://www.tensorflow.org/

NeVer 2.0 3

TORCH to manipulate DNNs, and only two mainstream pruning techniques
are implemented, namely network slimming [24] and weight pruning [17].

— Verification of DNNs: currently, NEVER 2.0 leverages external tools as
backends to provide verification capabilities; connectors to Marabou [13],
ERAN [25] and MIPVerify [28] are currently implemented; we plan to add
abstraction-refinement algorithms that improve on and extend those avail-
able in NEVER, but their development is still underway.

— Repair of DNNs should enable the results of verification to improve on the
results of learning; currently, NEVER 2.0 features the same mechanism of
NEVER, i.e., it relies on the capability of the embedded learning algorithms
to exploit counterexamples and retrain the network in a better way — a sort
of adversarial training guided by verification; we expect to reach tighter inte-
gration of verification and learning once our custom verification algorithms
are implemented.

The version of NEVER 2.0 corresponding to this work is available online [8]
under the Commons Clause (GNU GPL v3.0) license.
The rest of the paper is structured as follows. In Section 2 we introduce some
basic notations and definition to be used through the paper. In Section 3 we
describe the architecture and the current implementation of NEVER 2.0. In
Section 4 we show some early results obtained with NEVER 2.0 prototype using
MNIST datasets to learn and verify fully-connected ReLU networks. We conclude
the paper with and our future research agenda in Section 5.

2 Preliminaries

A neural network is a system of interconnected computing units called neurons.
In fully connected feed-forward networks, neurons are arranged in disjoint layers,
with each layer being fully connected only with the next one, and without con-
nection between neurons in the same layer. Given a feed-forward neural network
N with n layers, we denote the i-th layer of N as h(?). We call a layer without in-
coming connections input layer h(Y)| a layer without outgoing connections output
layer h(™, while all other layers are referred to as hidden layers . Each hidden
layer performs specific transformations on the inputs it receives. In this work we
consider hidden layers that make use of linear and batch normalization modules.
Given an input vector x, a linear module computes a linear combination of its
values as follows:

L0 = WO . x + b (1)

where W) is the matrix of weights and b(¥ is the vector of the biases associated
with the linear module in the i-th layer and L(* is the corresponding output.
Entries of both W and b(Y) are learned parameters. In our target architec-
tures, each linear module is followed by a batch normalization module. This is
done to address the so-called internal covariate shift problem, i.e., the change

4 Guidotti et al.

of the distribution of each layer’s input during training [12]. The mathematical
formulation of batch normalization layers can be expressed as

()

BN =
J o'(l) “+ e(l)

® (L(i) _ M(i)) + ﬂ(i) (2)

All the operators in this equation are element-wise operators: in particular ® and
the fractional symbol represent respectively the Hadamard product and division.
BN® and L@ are the output and the input vectors of the module, respectively.
~D pw® g 30) are vectors, whereas €(?) is a scalar value. These are learned
parameters of the batch normalization layer. In particular p(® and @ are the
estimated mean and variance of the inputs computed during training.

Finally, the output of hidden layer i is computed as h(® = @) (BN(i)), where
&) is the activation function associated to the neurons in the layer. We consider
only networks utilizing Rectified Linear Unit (ReLU) activation functions, i.e.,
o) = max(O,BN(i)). Given an input vector x, the network N computes an
output vector y by means of the following computations

h) =x
h® = o BNOLOMO-D)) i=2,... . n—1 (3)
y =h" = L(h(nfl))

A neural network can be considered as a non-linear function fy : X — Y,
where X is the input space of the network,) is the output space and w is
the vector representing the weights of all the connections. We consider neural
network applied to classification of d-dimensional vectors of real numbers, i.e.,
X C RY and Y C R™, where d is the dimension of the input vector and m is
the dimension of the output vector and thus also the number of possible classes
of interest. We assume that given an input sample x the output vector fy (x)
contains the likelihood that x belongs to one of the m classes. The specific class
can be computed as

arg max (fw(x))e
ce{l,...,m}

where (fw(x)). denotes the c-th element of fy. Training of (deep) neural net-
works poses substantial computational challenges since for state-of-the-art mod-
els the size of w can be in the order of millions. As in any machine learning
task, training must select weights to maximize the likelihood that the network
responds correctly, i.e., if the input x is of class k, the chance of misclassifica-
tion should be as small as possible, where misclassification occurs whenever the
following holds

argmax (fu())e £ k
ce{l,...,m}

Training can be achieved through minimization of some kind of loss function
whose value is low when the chance of misclassification is also low. While there

NeVer 2.0 5

are many different kinds of loss functions, in general they are structured in the
following way:

J(w) = 1 > Err(ye, argmax (fw(xk))e) + A+ Reg(w) (4)
n =0 ce{l,....m}

where n is the number of training pairs (X, yx), yx is the correct class label of
Xk, Err represents the loss caused by misclassification, Reg is a regularization
function, and A is the parameter controlling the effect of Reg on J. The regu-
larization function is needed to avoid owerfitting, i.e., the high variance of the
training results with respect to the training data. The regularization function
usually penalizes models with high complexity by smoothing out sharp variations
induced in the trained network by the Err function. A common regularization
function is, for example, the L2 norm:

Reg(w) = 5 -|[wllz 5

3 System architecture and implementation

Converters

Internal Representation|

Trainingl Pruningl Verifi(atinnl

Fig. 1. High level UML diagram of NEVER 2.0.

NEVER 2.0 is conceived as a modular API to manage DNNs, from training
to verification and repair. In Figure 1 we present an overview of the architecture
divided in six main packages. The main elements we consider in this work are
training, pruning and verification: these packages are organized mostly around
Strategy patterns that define general interfaces to perform network operations,
and specialized subclasses that actually support those operations. Additionally,
to have full control of the internal model and to separate the main elements from
implementation details, we designed our own network representation structured
as a graph whose nodes correspond to disjoint layers. To leverage the capabilities
of current learning frameworks, we designed a set of conversion strategies to/from
our internal representation and the representations whereon learning frameworks
are based. The aims and the internal structures of the packages shown in Figure 1
are described in detail in the remainder of this Section.

6 Guidotti et al.

BatchNorm1DNode

+weight: Tenmsor

+bias: Tensor

+running mean: Tensor

+running var: Tensor

+num_features: int FullyConnectedNode

+eps: float +weight: Tensor

+momentum: float +bias: Tensor

+affine: bool +in_features: int RelLUNode

+track_running stats: bool |+out features: int n

SequentialNetwork NeuraiNetwork

+identifier: str +nodes: dict <str, LayerNode> LayerNode
+add_node (LayerNode) +edges: dict <str, list <str=>
+get first node(): LayerNode +alt rep cache: dict <str, ModelRepresentation| ridentifier: st
+get_next node(LayerNode): LayerNod +up_to_date: bool

+get last node(): LayerNode

Fig. 2. UML diagram of internal network representation.

3.1 Internal Representation

The classes supporting the internal representation are shown in Figure 2. There
are two abstract base classes, namely NeuralNetwork and LayerNode. Conceptu-
ally, NeuralNetwork is a container of LayerNode objects orgnaized inside Neural-
Network as a graph. A list of ModelRepresentation objects is kept for internal
usage — see subsection 3.2 for details. In the current prototype the only con-
crete subclass of NeuralNetwork is SequentialNetwork which represents networks
whose corresponding graph is a list, i.e., each layer is connected only to the next
one. More complex topologies for concrete architectures can be implemented,
should the need arise. The concrete subclasses of LayerNode are the building
blocks that we currently support: BatchNorm1DNode, FullyConnectedNode and
ReLUNode, i.e., batch normalization layers, fully connected layers and ReLU lay-
ers, respectively. These building blocks are sufficient to encode the DNNs that
we introduced in Section 2. It should be noted that our representation is not an
“executable” representation, i.e., it does not provide the capability to compute
the output of a DNN given the input, therefore our nodes contain only enough
information to create the corresponding executable representations in different
learning frameworks and/or support the encoding for verification purposes. The
class Tensor is our utility class for tensorial data. Currently it is simply an alias
for the ndarray class in numpy, but we have added it as a wrapper to isolate
NEVER 2.0 classes from implementation details.

3.2 Converters and Representations

The design of a model representation to generalize those used in different learn-
ing frameworks is based on the Adapter design pattern, as shown in Figure 3.
We have defined the abstract class ModelRepresentation. which is then specialized
by PyTorchNetwork and ONNXNetwork to encode PYTORCH and ONNX models,
respectively. The concrete subclasses wrap the actual network model in the cor-
responding learning framework or interchange format, as in the case of ONNX.
Conversion between our internal representation and the concrete subclasses of

NeVer 2.0 7

PyTorchConvert
+from_neural_network(NeuralNetwork): PyTorchNetwor]
+to_neural network(PyTorchNetwork): NeuralNetwok ConversionStrategy
[+from_neural_network(NeuralNetwork): ModelRepresentatidn
[+ ion):
ONNXConvert to_neural_network(ModelRepresentation): NeuralNetwork
+from_neural_network(NeuralNetwork): ONNXNetwor]
+to_neural network(ONNXNetwork): NeuralNetwok | PyTorchNetwork |
I

jon |+pytorch_network: torch.nn.modulq
+identifier: String <l
+up_to_date: boolean ONNXNetwork

Fig. 3. UML diagram of the classes related to the representations and converters of
the different learning frameworks.

ModelRepresentation are provided by subclasses of ConversionStrategy — we may
consider this also as a Builder pattern implementation. ConversionStrategy de-
fines an interface with two functions: one for converting from our internal rep-
resentation to a specific model representation, and the other for performing the
inverse task. The concrete subclasses of ConversionStrategy implement the func-
tions for the corresponding concrete subclasses of ModelRepresentation. As new
type of learning frameworks/model are added to NEVER 2.0, new concrete sub-
classes of ModelRepresentation should be added to support conversion.

3.3 Training

AdamTraining

+n_epochs: 1nt

Dataset +train_batch_size: int
[+get_training set(): (Temsor, Tensor) +test_batch size: int
MNISTDataset +get_test_set(): (Tensor, Tensor) +learning rate: Tloat
+add_training_sample(sample: (Tensor, Temsor) +betas: (float, float)
+training set: (Tensor, Tensor) +add_test_sample(sample: (Tensor, Tensor)) +eps: float

+test_set: (Tensor, Temsor) +weight decay: float
+get_training_set(): (Tensor, Tensor +cuda: boolean
+get_test set(): (Tensor, Tensor) +train patience: int

— +scheduler_patience: int
TrainingStrategy +batchnorm_decay: float
|*train(Neurainetwork,pataset): NeuraiNetwor] +11 decay: float

+fine tuning: bool

+train(NeuralNetwork,Dataset): NeuralNetwor]

Fig. 4. UML diagram of the classes related to the training strategies.

In Figure 4 we show the internal design of the Training package whose main
element is the abstract class TrainingStrategy. The current abstraction of a train-
ing strategy features a single function which requires a NeuralNetwork and a
Dataset and returns a (trained) NeuralNetwork. The concrete subclasses of Train-
ingStrategy provide the actual training procedures. Currently, we have designed
and implemented a single training procedure based on the Adam optimizer [14]
and adapted to the concrete pruning procedures we have implemented. Our im-
plementation requires a PYTORCH representation to train the network, but this
is handled transparently by NEVER 2.0 architecture. The class Dataset is meant
to represent a generic dataset. As such it features four functions: one for loading
the training set — the set of data considered to train the network — one for
loading the test set — the set of data considered to assess the accuracy of the

8 Guidotti et al.

network and two for adding a data sample to the training set and to the test
set respectively. The actual datasets are represented by concrete subclasses of
Dataset. Currently, we have implemented the corresponding concrete class for the
MNIST dataset MNISTDataset and for the FMNIST dataset FMNISTDataset.

3.4 Pruning

WeightPruning
+sparsity rate: float
+training strategy: AdamTraining
+pre_training: bool

+prune (NeuralNetwork,Dataset): NeuralNetwor]

PruningStrategy

NetworksSlimming [#prune(Neuratietwork,Dataset) : NeuralNetworl MNISTDataset

Teparsity rate: float +training_set: (Tensor, Tensor)

+training_strategy: AdamTraining Dataset +test_set: {Temsor, Tensor)

+pre_training: bool +get_training_set(): (Tensor, Tensor)

prune (Neura\Network,Dataset] . NeuralNetwor] +get_training set(): (Temsor, Temsor) +get_test_set(): (Tensor, Tensor)
+get_test_set(): (Tensor, Tensor) +add_training_sample(sample: (Tensor, Tensor)
+add_training_sample(sample: (Tensor, Tensor) +add_test_sample(sample: (Tensor, Tensor))
+add_test_sampile(sampile: (Tensor, Tensor))

Fig. 5. UML diagram of the classes related to the pruning strategies.

As mentioned in our paper [7], we believe that pruning can be one of the keys
to ease the verification of DNNs, therefore we decided to include abstractions
and concrete classes to support pruning in the current realization of NEVER 2.0.
In Figure 5 we show the architecture, where the abstract class PruningStrategy
is meant to represent a generic pruning methodology, and consists of a single
function which requires a NeuralNetwork and a Dataset and returns the pruned
NeuralNetwork. Concrete subclasses implement the actual pruning procedures:
currently we have designed and implemented two concrete strategies, namely
WeightPruning and NetworkSlimming — both based on PYTORCH representa-
tions. In particular, the former strategy selects all the weights which are smaller
than a certain threshold and sets them to 0. The latter strategy leverages the
weights of the batch normalization layers to identify low-importance neurons and
remove them from the network — more details can be found in [9] and [19]. The
distinctive parameters of the pruning strategies are provided as attributes in the
concrete classes. In particular, if pre-training and/or fine-tuning are required for
the pruning procedure then a suitable training strategy must be provided to the
pruning strategy as an attribute.

3.5 Verification

As shown in Figure 6, we have designed the abstract class VerificationStrategy
to represent a generic verification methodology. This abstract class defines an
interface consisting of a single function which requires a NeuralNetwork and a
Property and returns a Boolean value depending on whether the property is
verified or not and a counterxample (if available). The abstract class Property
represents a generic property that should be verified. Currently we have two

NeVer 2.0 9

LocalRobustnessProperty
+data: Tensor
+target: int EranVerification
:E:;z?tig; bool “complete: bool
cepsilon: float +verity(NeuralNetwork, Property): (boolean|
+bounds: list <Tuple> Tensor
SMTLIBProperty —— MIPVerifyVerification
_ VerificationStrategy At Sir
[>>| Property Werlfyf”:_:;‘:iﬁ“""»P“’F”fy‘-' (boolean +verify(NeuralNetwork,Property): (boolean|
Tensor)

MarabouVerification

+verify(NeuralNetwork,Property): (boolean|
Tensor)

Fig. 6. UML diagram of the classes related to the verification strategies.

concrete classes: SMTLIBProperty and LocalRobustnessProperty. SMTLIBProp-
erty represent a generic property which NEVER 2.0 reads from a file formatted
according to SMTLIB ¢ syntax [3]. LocalRobustnessProperty is a “pre-cooked”
property encoding the search of an adversarial example corresponding to a spe-
cific data sample. The concrete subclasses of VerificationStrategy that we have
implemented so far are EranVerification, MarabouVerification and MIPVerifyVer-
ification which leverage, respectively, ERAN [25], Marabou [13] and MIP Verify
to verify the property.

4 Preliminary experimental analysis

We test the current capabilities of NEVER 2.0 by replicating the setup of the
experiment reported in [7]. In this experiment we analyze how the integration
of pruning and verification can ease analysis of DNNs — currently, a distinctive
capability that NEVER 2.0 offers. We test two different network architectures
and two different pruning methods considering all three verification backends
available in NEVER 2.0. The DNNs we consider are both fully connected net-
works with three hidden layers: one with 64, 32, 16 hidden neurons, and the
other with 128, 64, 32 hidden neurons. In both networks the activation function
is the ReLU. We experimented with weight pruning (based on [9]) and network
slimming (based on [19]). To analyze the performances of the different pruning
methods we test them with three different sets of pruning parameters which cor-
respond to increasing magnitudes of pruning. The results of our experiment are
summarized in Table 1. We consider three versions of each DNN: the version be-
fore pruning (baseline), the one obtained after a specialized training for network
slimming (sparse), the version after the application of weight pruning (WP) and
the one obtained after network slimming (NS). The results of our experiment
prove that NEVER 2.0 — albeit still at the prototypical stage — is ready to
verify networks of some practical interest, and its combination of pruning and
verification may offer some advantage over the straight usage of its backends.

5 http://smtlib.cs.uiowa.edu/

10 Guidotti et al.

MNIST FMNIST
Base | Param |Network|Marabou MIPVerify| ERAN|Marabou|/MIP Verify| ERAN
Baseline 0 0 0 0 0 1
Sparse 0 15% 20 0% 20 20
SET1 WP 8 5 14 2 5 19
NET1 NS 18 165 20 19 20 20
Sparse 0 0 1 0 0 0
SET2 WP 0 0 7 0 0 5
NS 5 15 17 6 4 20
Sparse 0 0 1 0 0 0
SET3 WP 0 0 1 3 0 3
NS 6 0 7 0 0 4
Baseline 0 0 0 0 0 1
Sparse 0x 17+ 20 0% 19% 20
SET1 WP 9 0 0 0 0 0
NET2 NS 18 14x 19 0% 17 20
Sparse 0x 0 0 0% 0 0
SET2 WP 0 0 0 0 0 0
NS 0 0 1 0 0 0
Sparse 0 0 0 0 0 0
SET3 WP 0 0 0 0 0 0
NS 1 0 0 0 0 0

Table 1. Results — originally reported in [7] — obtained by running NEVER 2.0
with Marabou, ERAN and MIPVerify. The values reported represent the number of
problems which were solved successfully within the timeout of 600 CPU seconds. The
column Base represent the base architecture, Param represent the set of parameters
used for increasing magnitude of pruning and Network represent the kind of network
considered. Marabou, MIPVerify, and ERAN represent the number of problems
solved by Marabou, MIP Verify and ERAN, respectively.

5 Planned extensions

NEVER 2.0 is an ongoing project and we have already planned various exten-
sions. First, we aim to increase the variety of networks that can be represented
by adding more concrete subclasses to LayerNode. In particular, we expect to
be able to design and implement convolutional layers, the related batch nor-
malization layers, different kinds of pooling layers and different kinds of activa-
tion functions. With these extensions, that should be matched by corresponding
training, pruning and verification enhancements, NEVER 2.0 should be able to
represent all the main kinds of DNNs which current state-of-the-art verification
methodologies can deal with.

The second addition that we have already planned, relates to the addition
of converters to/from other major learning frameworks, starting from TENSOR-
Frow. This addition should include also the capability of visualizing and mod-
ifying the network architecture through a graphical user interface, in the hope
that NEVER 2.0 becomes more easily accessible also to the non-initiated.

Further additions that we wish to add include quantization, which we believe
would create interesting synergies with pruning, and repair, i.e, the capability
to modify a neural network to make it compliant to the property of interest. In
particular, besides basic form of repair that are already supported by NEVER
2.0, i.e., verification-based adversarial learning, we expect to provide tighter
integration between learning and verification.

NeVer 2.0 11

References

10.

11.

12.

13.

14.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D.G., Steiner, B., Tucker, P.A., Vasudevan, V., Warden, P., Wicke, M.,
Yu, Y., Zhang, X.: Tensorflow: A system for large-scale machine learning. CoRR
abs/1605.08695 (2016)

Akintunde, M., Lomuscio, A., Maganti, L., Pirovano, E.: Reachability analysis
for neural agent-environment systems. In: Principles of Knowledge Representation
and Reasoning: Proceedings of the Sixteenth International Conference, KR 2018,
Tempe, Arizona, 30 October - 2 November 2018. pp. 184-193. AAAT Press (2018)
Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories (Edinburgh, UK) (2010)

Dutta, S., Chen, X., Jha, S., Sankaranarayanan, S., Tiwari, A.: Sherlock - A tool
for verification of neural network feedback systems: demo abstract. In: Proceedings
of the 22nd ACM International Conference on Hybrid Systems: Computation and
Control, HSCC 2019, Montreal, QC, Canada, April 16-18, 2019. pp. 262-263 (2019)
Franzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure.
Journal on Satisfiability, Boolean Modeling and Computation 1, 209-236 (2007)

. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial

examples. In: 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015)
Guidotti, D., Leofante, F., Pulina, L., Tacchella, A.: Verification of neural networks:
Enhancing scalability through pruning. In: ECAI 2020 - 24th European Conference
on Artificial Intelligence (to appear)

Guidotti, D., Tacchella, A., Pulina, L.: NeVer 2.0 (2020),
https://gitlab.sagelab.it/dguidotti/fomlas2020-code

Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural networks. CoRR abs/1506.02626 (2015)

Huang, X., Kroening, D., Kwiatkowska, M., Ruan, W., Sun, Y., Thamo, E., Wu,
M., Yi, X.: Safety and trustworthiness of deep neural networks: A survey. arXiv
preprint arXiv:1812.08342 (2018)

Igel, C., Glasmachers, T., Heidrich-Meisner, V.: Shark. Journal of Machine Learn-
ing Research 9, 993-996 (2008)

Toffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: Proceedings of the 32nd International Confer-
ence on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015. pp. 448-456
(2015)

Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljic, A., Dill, D.L., Kochenderfer, M.J., Barrett, C.W.:
The marabou framework for verification and analysis of deep neural networks. In:
Computer Aided Verification - 31st International Conference, CAV 2019, New York
City, NY, USA, July 15-18, 2019, Proceedings, Part 1. pp. 443-452 (2019)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio,
Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015)

12

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Guidotti et al.

LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521(7553), 436-444
(2015)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE 86(11), 2278-2324 (1998)
LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural
Information Processing Systems 2, [NIPS Conference, Denver, Colorado, USA,
November 27-30, 1989]. pp. 598-605 (1989)

Leofante, F., Narodytska, N., Pulina, L., Tacchella, A.: Automated verification of
neural networks: Advances, challenges and perspectives. CoRR abs/1805.09938
(2018)

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolu-
tional networks through network slimming. In: IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. pp. 2755-2763
(2017)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chin-
tala, S.: Pytorch: An imperative style, high-performance deep learning library. In:
Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada. pp. 8024-8035 (2019)

Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Computer Aided Verification, 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings. pp. 243—
257 (2010)

Pulina, L., Tacchella, A.: Never: a tool for artificial neural networks verification.
Annals of Mathematics and Artificial Intelligence 62(3-4), 403-425 (2011)
Pulina, L., Tacchella, A.: Challenging SMT solvers to verify neural networks. Al
Commun. 25(2), 117-135 (2012)

Sietsma, J., Dow, R.J.F.: Neural net pruning-why and how. In: Proceedings of
International Conference on Neural Networks (ICNN’88), San Diego, CA, USA,
July 24-27, 1988. pp. 325-333 (1988)

Singh, G., Gehr, T., Piischel, M., Vechev, M.T.: Boosting robustness certification
of neural networks. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019)

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. In: 2nd International Confer-
ence on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings (2014)

Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-
level performance in face verification. In: 2014 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28,
2014. pp. 1701-1708 (2014)

Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019)

Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of research on machine
learning applications and trends: algorithms, methods, and techniques, pp. 242—
264. 1GI Global (2010)

30.

31.

32.

33.

34.

35.

NeVer 2.0 13

Tran, H., Yang, X., Lopez, D.M., Musau, P., Nguyen, L.V., Xiang, W., Bak, S.,
Johnson, T.T.: NNV: the neural network verification tool for deep neural networks
and learning-enabled cyber-physical systems. CoRR abs/2004.05519 (2020)
Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
3-8 December 2018, Montréal, Canada. pp. 63696379 (2018)

Wu, M., Wicker, M., Ruan, W., Huang, X., Kwiatkowska, M.: A game-based ap-
proximate verification of deep neural networks with provable guarantees. CoRR
abs/1807.03571 (2018)

Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. CoRR abs/1708.07747 (2017)

Xie, Y., Jabri, M.A.: Analysis of the effects of quantization in multilayer neural
networks using a statistical model. IEEE Trans. Neural Networks 3(2), 334-338
(1992)

Yu, D., Hinton, G.E., Morgan, N., Chien, J., Sagayama, S.: Introduction to the
special section on deep learning for speech and language processing. IEEE Trans.
Audio, Speech & Language Processing 20(1), 4-6 (2012)

Verifying Recurrent Neural Networks using
Invariant Inference

Yuval Jacoby!, Clark Barrett?, and Guy Katz!

! The Hebrew University of Jerusalem, Israel
{yuval.jacoby, g.katz}@mail.huji.ac.il
2 Stanford University, USA
clarkbarrett@stanford.edu

Abstract. Deep neural networks are revolutionizing the way complex sys-
tems are developed. However, these automatically-generated networks are
opaque to humans, making it difficult to reason about them and guarantee
their correctness. Here, we propose a novel approach for verifying proper-
ties of a widespread variant of neural networks, called recurrent neural net-
works. Recurrent neural networks play a key role in, e.g., natural language
processing, and their verification is crucial for guaranteeing the reliability
of many critical systems. Our approach is based on the inference of invari-
ants, which allow us to reduce the complex problem of verifying recurrent
networks into simpler, non-recurrent problems. Experiments with a proof-
of-concept implementation of our approach demonstrate that it performs
orders-of-magnitude better than the state of the art.

1 Introduction

The use of deep neural networks (DNNs) [19] is on the rise. In recent years, DNNs
have successfully been applied in domains such as image classification [35], speaker
recognition [25], and game playing [47], often achieving much better performance
than hand-crafted software. This trend is likely to continue, and we can already
observe first signs of safety-critical systems being designed with DNN compo-
nents [4,28].

We focus here on recurrent neural networks (RNNs), which are a particular kind
of DNNs. Unlike feed-forward neural networks (FFNNs), where an evaluation of
the network is performed independently of past evaluations, RNNs contain memory
units that allow them to retain information from previous evaluations. This renders
RNNs particularly suited for tasks that involve context, such as text interpretation.
Consider, e.g., the sentence “you only live once, but if you do 4t right, once is
enough” (Mae West). In order for a neural network that reads the sentence word-
by-word to be able to associate the word it with the preceding word live, it must
retain information about words it had previously encountered. Because of this trait,
RNNs are increasingly used in machine translation [11], text summarization [40],
health applications [38], speaker recognition [24] and game playing [37].

Part of the success of DNNs is attributed to their very attractive generaliza-
tion properties: after being trained on a finite set of examples, they generalize well
to inputs they have not encountered before [19]. Unfortunately, while this works
well on average, it is known that DNNs may react in highly undesirable ways to
certain inputs. For instance, it has been observed that many DNNs are vulnerable

to adversarial attacks [20], where small, carefully-crafted perturbations are added
to an input in order to fool the network into performing significant classification
errors. In one recent paper, Cisse et al. [9] proposed an approach for producing
such adversarial perturbations that could fool RNNs for automatic speaker recog-
nition. This example, and others, highlight the need to formally verify the cor-
rectness of RNNs, so that they can be reliably deployed in safety-critical settings.
However, while DNN verification has received significant attention in recent years
(e.g., [5,13,17,27,31,39,41,50,51,53]), almost all of these efforts have been focused
on FFNNs, with very little work done on RNN verification.

To the best of our knowledge, the only existing general approach for RNN
verification is via unrolling [1]: the RNN is duplicated and concatenated onto itself,
creating an equivalent feed-forward network that operates on the sequence of inputs
simultaneously, as opposed to one at a time. The FFNN can then be verified using
existing FFNN verification technology. The main limitation of this approach is that
the transformation greatly increases the network size: if the RNN is to be evaluated
over k consecutive inputs, the resulting FFNN is k times larger than the original
RNN. Because the complexity of FFNN verification is known to be exponential in
network size [29], this reduction gives rise to FFNNs that are difficult to verify —
and is hence applicable primarily to small RNNs with short input sequences.

Here, we propose a novel approach for RNN verification, which affords far
greater scalability than unrolling. Our approach advocates reducing the RNN ver-
ification problem to FFNN verification, but does so in a way that is independent
of the number of inputs that the RNN is to be evaluated on, and without duplicat-
ing the RNN or otherwise increasing its size. Specifically, our approach consists of
two main steps: (i) create an FFNN that over-approzimates the RNN, but which
is the same size as the RNN; and (ii) verify this over-approximation using ex-
isting techniques for FENN verification. In order to perform step (i) we leverage
the well-studied notion of inductive invariants: our FFNN encodes time-invariant
properties of the RNN, which hold initially and continue to hold after the RNN is
evaluated on each additional input. Using such invariants allows us to circumvent
any duplication of the network or its inputs.

Of course, coming up with meaningful inductive invariants is crucial for the
success of this approach. At first we present a general framework that receives the
inductive invariants from an oracle, proves that they are indeed invariants, and then
uses them in over-approximating the RNN using an FFNN. This semi-automatic
framework can be useful, e.g., if a human expert can provide meaningful invariants
for the system at hand. Next, in order to render the approach fully automatic,
we present an approach for invariant inference in RNNs. Automated inference
of inductive invariants has been studied extensively in the context of program
verification, and is known to be undecidable in general. To mitigate this difficulty,
our approach attempts to infer invariants according to predefined templates. By
instantiating these templates, we automatically generate a candidate invariant I,
and then: (i) use our underlying FFNN verification engine to prove that I is indeed
an invariant; and (ii) use I in creating the FFNN over-approximation of the RNN,
in order to prove the desired property. If either of these steps fail, we refine the
invariant I (either strengthening or weakening it, depending on the point of failure),
and repeat the process. The process terminates when the property is proven correct,
when a counter-example is found, or when a certain timeout value is reached.

In order to evaluate our approach, we created a proof-of-concept implementation
in Python. As a feed-forward verification back-end we used the Marabou tool [31]
(other engines could also be used). When compared to the state of the art on a set
of benchmarks from the domain of speaker recognition [24], our approach performs
orders-of-magnitude faster. We intend to make our code and benchmarks publicly
available online with the final version of this paper.

To summarize, our contributions are:

1. We propose a general framework for the invariant-based verification of recurrent
neural networks. The framework reduces the RNN verification problem to the
widely studied FFNN verification problem. The complexity of our procedure is
independent of the number of time steps that the RNN is to be evaluated.

2. We propose approaches for automatically inferring invariants for RNNs.

3. We provide an implementation of our technique, as well as a new set of bench-
mark problems.

The rest of this paper is organized as follows. In Section 2, we provide a brief
background on DNNs and their verification. In Section 3, we describe our approach
for verifying RNNs via a reduction to FFNN verification, using invariants. We
describe automated methods for RNN invariant inference in Section 4, followed
by an evaluation of our approach in Section 5. We then discuss related work in
Section 6, and conclude with Section 7.

2 Background

2.1 Feed-Forward Neural Networks and their Verification

Feed-forward neural networks (FFNNs) are comprised of an input layer, an output
layer, and multiple hidden layers in between. A layer is comprised of multiple nodes
(neurons), each connected via edges to nodes from the preceding layer. Each node is
assigned a bias value, and each edge is assigned a weight value — both of which are
determined when the FFNN is trained. The FFNN is evaluated by assigning values
to neurons in the input layer (input neurons), and propagating these values forward
through the network (hence the name “feed-forward”). The value of each neuron is
computed as a weighted sum of values from the preceding layer, according to the
edge weights, plus its bias value. This weighted sum is then passed to a non-linear
activation function, and this function’s output becomes the value for the new node.

A simple example appears in Figure 1. The FFNN depicted therein has a single
input neuron v;,1, a single output neuron vs;, and two hidden neurons vy ; and
V2,2 in a single hidden layer. All bias values are assumed to be 0. When the input
neuron is assigned v;; = 4, the weighted sums for vy ; and ve o are 4 and —4,
respectively. We use the common ReLU(z) = max(0, z) function as our activation
function, which yields vo 1 = ReLU(4) = 4 and vg 2 = ReLU(—4) = 0. Finally, we
obtain the output vs; = 4.

More formally, given a DNN N, we use n to denote the number of layers of
N. We will use s; to denote the number of neurons in layer i, also called the
dimension of layer i. Each hidden layer is associated with a weight matrix W; of
size s;_1 X s;, and a bias vector b; of size s;. The DNN input vector will be denoted

Input Hidden Output
layer layer layer

L @
V1,1 / \ 3,1
B e

Fig.1: A simple feed-forward neural network.

as v1 and the output vector of each hidden layer 1 < ¢ < n as v; = f (W;v;—1 + b;),
where f is some element-wise activation function (such as ReLU(z) = max (0, x)).
The output layer is evaluated similarly, but without an activation function: v, =
Wp—1Vn—1+by,. We will use v; ; to point to the j’th neuron in the i’th layer. Given
some input vector vy the network then can be evaluated by sequentially calculating
v; for i = 2,3,...,n, and v, will be the output of the network. In the remainder of
the paper, we will use z and y to denote the input and output layers, respectively;
and |z| to denote the size of the input vector, which is just s;. In addition, unless
otherwise stated, for simplicity we will assume that all bias values are 0.

Verifying FFNNs. The goal of verifying an FFNN is to establish whether there
exist inputs that satisfy certain constraints, such that their corresponding outputs
also satisfy certain constraints. Many interesting problems can be cast into this
formulation. Looking again at the network from Figure 1, we might wish to know
whether it is always the case that v;; < 5 entails v3; < 20. Negating the output
property, we can use a verification engine to check whether it is possible that
vi1 < 5 and vz > 20. If this query is unsatisfiable (UNSAT), then the original
property is bound to hold; but if the query is satisfiable (SAT), as is the case
here, then the verification engine will provide us with a counter-example, such as
V1,1 = 710,1)371 = 20.

Formally, we define an FFNN verification query as a triple (P, N, @), where N
is an FFNN, P is a predicate over the input variables z, and @ is a predicate over
the output variables y. Solving this query entails deciding whether there exists a
specific input assignment xy such that P(z9) AQ(N(x)) holds (where N (xg) is the
output of N for the input xg). It has been shown that even for simple FFNNs and
for predicates P and @ that are conjunctions of linear constraints, the verification
problem is NP-complete [29]: in the worst-case, solving it requires a number of
operations that is exponential in the number of neurons in N.

2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are similar to FFNNs, but have an additional
construct called a memory unit. These memory units are typically introduced for
the purpose of modeling data that changes over discrete units of time (time-series
data) [15,52]. Memory units achieve this by allowing a hidden neuron to store its
assigned values for a specific evaluation of the network, and have that value become
part of the neuron’s weighted sum computation in the next evaluation. Thus, when

evaluating the RNN in time step ¢ + 1, e.g. when the RNN reads the ¢ + 1'th word
in a sentence, the results of previous evaluations can affect the current result. We
say that a DNN is an RNN if at least one of its neurons has a memory unit. An
RNN can also contain “regular”, memory-less neurons.

A simple example of an RNN appears in Figure 2. There, node @21 represents
node vg 1’s memory unit (throughout this paper, we will often draw the mem-
ory units as squares, and mark them using the tilde sign). When computing the
weighted sum for node v; 1, the value of ¥ ; is also added to the sum, according to
its listed weight (1, in this case). Then, once the value of v 1 has been computed,
it is stored in ¥ ; for the next round. In other words, when evaluating v, ; in time
step t + 1, its value from iteration t is added to the weighted sum; and the final
value assigned to vy ; is then stored back in 951, to be used in iteration ¢ + 2.
By convention, we assume that all memory units are initialized to 0 for the first
evaluation, at time step ¢t = 1.

Time Step ‘ V1,1 V2,1 V2,1 V3,1
0505 0 0.5 L

15 2 05 2 ‘
101 2 1 1

30 1 0 v ‘ : el

Fig.2: An illustration of a toy RNN with ReLLU activation functions. Each row of
the table represents a single time step, and depicts the value of each neuron for
that step. Observe that due to the ReLUs functions, the value of v§71 is computed

=W N =

as max (0, 175711 + vil), where the ¢ superscript represents time step ¢.

Formally, we define an RNN as follows. We use the same terminology that we
did for FFNNs, but add to each node a superscript ¢ to indicate the timestamp
of the RNN’s evaluation: for example, v, indicates the value that node vs s is
assigned in the 4’th evaluation of the RNN. Next, we associate each hidden layer
of the RNN with a square matrix H; of dimension s;, that represents the weights
on edges from memory units to neurons. Observe that each memory unit in layer
1 can contribute to the weighted sums of all neurons in layer 7, and not just to the
neuron whose values it stores. For time step ¢t > 0, the evaluation of each hidden
layer 1 < i < n is now computed by:

1]5 = f (Wi’Uf_l + Hﬂ}f_l + bl) (1)

And by convention, we set v? to be the zero vector for all layers. The output values
are computed by:
vb = Wyl + Hyol7t + b,

To keep the definition simple, we assume that each hidden neuron in the network
has a memory unit. This definition captures also “regular” neurons, by setting the
appropriate entries of H to 0, effectively cutting off the memory unit.

For simplicity, in our formulation we focus on activation functions that are
applied element-wise. There exist more complex functions, such as Long-Short term
Memory (LSTM) [26] or Gated Recurrent Unit (GRU) [7], that are applied to
multiple nodes at once. Our technique can be extended to this case, as well; we
leave this for future work.

Verifying RNNSs. Similarly to the FFNN case, we define an RNN verification
query as a tuple (P, N, Q, Tmax), where P is an input property, @ is an output
property, N is an RNN, and Ti,.x € N is a bound on the time interval for which
the property should hold. P and @ include linear constraints over the network’s
inputs and outputs; only now they may also use the notion of time, stipulating,
e.g., that output y» at the 5th time step is at most 10: y3 < 10.

As a running example, consider the network from Figure 2, denoted by N, the
input predicate P = AJ_,(—3 < v} ; < 3), the output predicate Q = \/t5:1(v§,1 >
16), and the time bound Ty,.x = 5. This query searches for an evaluation of N with
5 time steps, in which all input values are in the range [—3, 3], and such that at some
time step the output value is at least 16. By the weights of N, it can be proved that
v} 1 is at most the sum of the ReLUs of inputs so far, v} ; < 22:1 ReLU(v] ;) < 3t;
and so vg,l <15 for all 1 <t <5, and the query is UNSAT.

2.3 Inductive Invariants

Inductive invariants [16] are a well-established way to reason about software with
loops. As we later demonstrate, such invariants can be useful in reasoning about
RNNSs, as these networks perform a loop-like computation.

Formally, let (@, qo,T) be a transition system, where @ is the set of states,
qo € @ is an initial state, and T'C @ x @ is a transition relation. An invariant I is
a logical formula defined over the states of @), with two properties: (i) I holds for
the initial state, i.e. I(go) holds; and (ii) I is closed under T, i.e. (I(¢) A {(q,¢’) €
T) = I(¢'). If it can be proved (in a given proof system) that formula I is an
invariant, we say that I is an inductive invariant. We use Sy to denote the support
of I, i.e. theset Sy ={qe Q| I(q)}.

Invariants are particularly useful when attempting to verify that a given tran-
sition system satisfies a safety property. There, we are given a set of bad states B,
and seek to prove that none of these states is reachable. We can do so by showing
that Sy N B = (. Unfortunately, automatically discovering invariants for which the
above holds is typically an undecidable problem. Thus, a common approach is to
restrict the search space — i.e., to only search for invariants with a certain syn-
tactic form. As we later discuss, in the context of RNNs such an approach is often
sufficient for coming up with useful inductive invariants.

3 Reducing RNN Verification to FFNN Verification

3.1 Unrolling

To date, the only available general approach for verifying RNNs [1] is to transform
the RNN in question into a completely equivalent, feed-forward network, using un-
rolling. An example appears in Figure 3. The idea is to leverage Tyax, which is an
upper bound on the number of times that the RNN will be evaluated. The RNN is
duplicated Ti,ax times, once for each time step in question, and its memory units
are removed. Finally, the nodes in the i¢’th copy are used to fill the role of memory
units for the ¢ + 1’th copy of the network.

While unrolling gives a sound reduction from RNN verification to FFNN veri-
fication, it unfortunately tends to produce very large networks. When verifying a

<
E
<
o
2
B
W

|

1

1 ol

|
|

1

H

—
—

—

—
—

1
—_—

1

E—

1
—_—

?
&

—
—_

1
!

—
W e—

—
W ——

V3,1 U311 U311 V3,1 '051,1
Fig. 3: Unrolling of the network from Figure 2, for Ty,ax = 5 time units. The edges
in red fill the role of the memory units of the original RNN. The number of neurons

in the unrolled network is 5 times the number of neurons in the original.

property that involves ¢ time steps, an RNN network with n memory units will be
transformed into an FENN with (¢ — 1) - n new nodes. Because the FFNN verifica-
tion problem becomes exponentially more difficult as the network size increases [29],
this renders the problem infeasible for large values of t. As scalability is a major
limitation of existing FFNN verification technology, unrolling can currently only
be applied to small networks that are evaluated for a small number of time steps.

3.2 Circumventing Unrolling

We propose a novel alternative to unrolling, which can reduce RNN verification to
FENN verification without the blowup in network size. The idea is to transform a
verification query ¢ = (P, N, Q, Tmax) over an RNN N into a different verification
query ¢ = (]5, N, Q> over an FFNN N. ¢ is not equivalent to ¢, but rather over-
approximates it. The approximation is constructed in a way that guarantees that if
¢ in UNSAT, then ¢ is also UNSAT. In other words, if the modified property holds for
N , then the original property holds for N. As is often the case, if ¢ is SAT, either
the original property truly does not hold for IV, or the invariant I was too weak. In
the latter case, we can strengthen I and try again; we discuss this case later.

A key point in our approach is that ¢ is created in a way that captures the
notion of time in the FFNN setting, and without increasing the network size. This
is done by incorporating into P an invariant, that puts bounds on the memory
units as a function of the time step ¢. This invariant does not precisely compute
the values of the memory units — instead, it bounds each of them in an interval.
This inaccuracy is what makes ¢ an over-approximation of ¢. More specifically,
the construction is performed as follows:

1. N is constructed from N by adding a new input neuron, ¢, to represent time.
Because FFNNs typically deal with continuous inputs, we will treat ¢ as a real
number.

2. For every node v with memory unit v, in N we replace v with a regular neuron,
0™, which is placed in the input layer. The m superscript signifies that this
neuron replaces a memory unit. Neuron v™ will be connected to the network’s
original neurons, just as ¥ was, and with the same weights as before.?

3 Note that we slightly abuse the definitions from Section 2, by allowing an input neuron
to be connected to neurons in layers other than its preceding layer.

3. We set P = PA (1 <t < Thax) A I, where I is a formula that bounds the
values of each new v node as a function of the time step ¢. The constraints in
I constitute the invariant over the memory units’ values.

4. The output property is unchanged: Q =Q.

We name ¢ and N constructed in this way the snapshot query and the snapshot
network, respectively, and denote ¢ = S(p) and N = S(N). The intuition behind
this construction is that query ¢ encodes a snapshot (an assignment of t) in which
all constraints are satisfied. At this point in time, the v nodes represent the values
stored in the memory units (whose assignments are bounded by the invariant I);
and the input and output nodes represent the network’s inputs and outputs at
time t. Clearly, a satisfying assignment for ¢ does not necessarily indicate a counter-
example for p; e.g., because the values assigned to v might be impossible to obtain
at time ¢ in the original network. However, if ¢ is UNSAT then so is ¢, because there
does not exist a point in time in which the query might be satisfied. Note that
the construction only increases the network size by 1 (the v™ neurons replace the
memory units, and we add a single neuron t).

Time-Agnostic Properties. In the aforementioned construction of ¢, the original
properties P and @ appear, either fully or as a conjunct, in the new properties P
and Q. It is not immediately clear that this is possible, as P and) might also

involve time. For example, if P is the formula ’UZ’Q > 10, it cannot be directly

incorporated into]5, because N has no notion of time step 7.

To overcome this difficulty, we make the following simplifying assumption: we
assume that P and @ are time-agnostic, and are given in the following form: P =
/\;‘F;‘f" Y1 and Q = \/f:f" 19, where 11 and 1 are formulas that include linear
constraints over the inputs and outputs of IV, respectively, at time stamp ¢. This
formulation can express queries in which the inputs are always in a certain interval,
and a bound violation of the output nodes is sought. Our running example from
Figure 2 fits this form. When the properties are given in this form, we set P = 1,
and Q = 1)y, with the ¢t superscripts omitted for all neurons. Later, in Section 4.4,
we relax this limitation significantly.

Example. In Figure 4 we demonstrate our approach on the running example from
Figure 2. Recall that in that example, our constraints were P = /\?:1(—3 <vf, <
3), and Q = szl(v}i)’l > 16). First, we add a new input neuron, marked ¢, to
represent the time step. Next, we replace the memory unit 92 ; with a regular
neuron, vyY4. Node v5" is connected to node vy ; with weight 1 (the same weight
previously found on the edge from 75 1 to va1). Next, we set P to be the conjunction
of (i) P, with its internal conjunction and ¢ superscripts omitted; (i) the time
constraint 1 < ¢ < 5; and (iii) the invariant that bounds the values of v3* as a
function of time: vy* < 3(¢ —1). Our new verification query is thus:

(—3<v11 <3)A(L<E<B)A (WY <3(t—1)),N,vs31 > 16)
N——

P Q

where N is the network in Figure 4. This query is, of course, UNSAT, indicating
that the original query is also UNSAT. Note that the new node ¢ is not connected

to any other node; it is added solely for the purpose of including it in constraints
that appear in P.

1
V1,1 V3,1

Fig.4: The feed-forward snapshot network N for the RNN from Figure 2. We
introduce two new nodes: ¢ to represent the time step, and vy’ to take over the
role of the memory unit oz ;.

The requirement that I be an invariant over the memory units of IV ensures that
our approach is sound. Specifically, it guarantees that I allows any assignment for
v"™ that the original memory unit ¥ might be assigned. For instance, looking at the
example from Figure 2, consider the input sequence vi ; = 2,07, = —1,v7; = 3.
This sequence implies that at the beginning of the fourth evaluation, 173,1 = vgl =
2—1+3 = 4. Our invariant I, which states that v3’; < 3(t —1) allows this, because
4 <3-3=29. On the other hand, I = (v3’; <t —1) is not a valid invariant for this
example, because it forbids a possible assignment of v5";.

The soundness guarantee is formulated in the following lemma (whose proof,
by induction, is straightforward and is omitted due to lack of space):

Lemma 1. Let ¢ = (P,N,Q, Timax) be an RNN wverification query, and let ¢ =
(P7 N, Q) be the snapshot query ¢ = S(p). Specifically, let N be constructed from
N by adding a time neuron t and by replacing each memory unit © with an input
neuron v'™; and let P=PA (1 <t < Tmax) AL If I is an invariant that bounds
the values of each v™, and if ¢ is UNSAT, then ¢ is also UNSAT.

3.3 Constructing ¢ : Verifying the Invariant

In Section 3.2 we described a reduction from RNN verification to FFNN verifica-
tion. A key assumption was that the oracle-provided formula I, which bounds the
memory units as a function of the time ¢, was truly an invariant. This assumption
is risky, as a malicious (or simply mistaken) oracle could provide a bogus invariant,
jeopardizing the soundness of the process as a whole. In this section we make our
method more robust, by including a step that verifies that I is indeed an invariant.
This step, too, is performed by creating an FFNN verification query, which can
then be dispatched using the back-end FFNN verification engine.

In Section 2.3 we defined the notion of an inductive invariant. In the context
of an RNN N, we define the state space @ as the set of states ¢ = (A,t) where
A is the current assignment to the nodes of N (including the assignments of the
memory units), and ¢ is a natural number representing the time step. For another
state ¢/ = (A’,t’), the transition relation T'(q,¢’) holds if and only if:

1. ¢ =t + 1; i.e., the time step has advanced by one;

2. for each memory unit ¢ associated with neuron v, it holds that A'[7] = A[v];
i.e., the assignment of each neuron in A is stored in its corresponding memory
unit in A’; and

3. the assignment A’ of all of the network’s neurons constitutes a proper evalua-
tion of the RNN according to Section 2; i.e., all weighted sums and activation
functions are computed properly.

A state qp is initial if the time step is 1, all memory units are assigned to 0, and
the assignment of all of the network’s neurons constitutes a proper evaluation of
the RNN (there may be multiple initial states).

Next, let I be a formula over the memory units of NV, and suppose we wish to
verify that I is an invariant. We slightly abuse notation, and treat I as a formula
over both the RNN N and its snapshot network N = S (N); for the latter, every
occurrence of memory unit ¢¢ is renamed to v™. Proving that I is in invariant
amounts to proving that I(qo) holds for any initial state go, and that for every two
states ¢,¢' € @, if I(q) then also I(¢'). Checking whether I(qp) holds is trivial:
in the initial step, all memory units are set to 0, and we can easily check that I
holds for this assignment. The second check is more tricky; here, the key point is
that because ¢ and ¢’ are consecutive states, the memory units of ¢’ are simply the
neurons of g. Thus, we can prove that I holds for ¢’ by looking at the snapshot
network, assuming that I holds initially, and proving that I[v™ — v,t — t+1], i.e.
the invariant with each memory unit v™ renamed to its corresponding neuron v
and the time step advanced by 1, also holds. The resulting verification query, which
we term ¢y, can be verified using the underlying FFNN verification back-end.

We use our running example from Figure 2 to illustrate this process. Let I =
vy < 3(t — 1) be our candidate invariant. We begin by checking that I holds at
every initial state go; this is true because at time ¢ = 1, vy} = 0 < 3-0. Next, we
assume that I holds for state ¢ = (A, t) and prove that it holds for ¢ = (A’,t + 1).
First, we create the snapshot FENN N, shown in Figure 4. We then extend the
original input property P = /\521(73 < w{,; < 3) into a property P’ that also
captures our assumption that the invariant holds at time ¢:

P =(-3< v <3)A (vl <3(t—1)).

Finally, we prepare an output property @’ that asserts that the invariant does not
hold for vy ; at time ¢ 4 1, by renaming v5}1 to v,1 and incrementing t:

Q/ = _|(’l)271 S 3(t + 1-— 1))

When the FFNN verification engine answers that o5 = (P, S(N), Q') is UNSAT, we
can conclude that I is indeed an invariant. In cases where the query turns out to
be SAT, I is not an invariant, and the counter-example returned by the underlying
verifier can be used to refine it.

The steps described in this section, namely (i) prove that a formula I is an
invariant; (ii) use I to create a query ¢ that over-approximates the original query
p; and (iii) prove that is ¢ UNSAT, allow us to automatically reduce the RNN
verification problem to the FENN verification problem. The only part of the process
that is not automated is coming up with the invariant I — which is the topic of
the following section.

4 Invariant Inference

In order to reduce RNN verification to FFNN verification, we require an invariant I
that bounds the values of each memory unit as a function of time ¢. In general, au-
tomatically discovering such invariants is an undecidable problem [44]. To mitigate
this difficulty we restrict ourselves to invariants that follow a linear template.

4.1 Single Memory Unit

We begin with a simple case, in which the network has a single hidden node v with
a memory unit (we will relax this limitation later). Note that this is the case in the
running example depicted in Figure 2. Here, inferring an invariant according to a
linear template means finding values «; and a,, such that:

a-(t—1) <" <ay-(t—1) (2)

Thus, the goal is to bound the value of ©! from below (using ;) and from above
(using «y,), both as a function of time. For simplicity, we focus only on finding the
upper bound; the lower bound case is symmetrical. For our running example, we
have already seen such an upper bound, which was sufficiently strong for proving
the desired property: o5 ; < 3(t — 1).

Once candidate a’s are proposed, verifying that the invariant holds can be
performed using the techniques outlined in Section 3. There are two places where
the process might fail: (i) the proposed invariant cannot be proved (¢ is SAT),
because a counter-example exists. This means that our invariant is too strong, i.e.
the bound is too tight. In this case we can weaken the invariant by increasing a,;
or (ii) the proposed invariant holds, but the FFNN verification problem that it
leads to, ¢, is SAT. In this case, the invariant is too weak; it is indeed an invariant,
but does not imply the desired output property. In this case, we can strengthen
the invariant by decreasing a,.

To illustrate these possible failures, we return to our running example from
Figure 2. Assume we set «, = 100. This value gives rise to a valid upper bound
(since we know that 05, < 3(t — 1) < 100t). However, this invariant is too weak
to prove that ¢ is UNSAT; for example, assigning ¢ = 4, v1; = 0 and v3"; = 40
will imply vs; = 40 which satisfies the output condition @ = \/;:’:1(1)31 > 16).
We can conclude that a stronger invariant, i.e. a smaller «,,, is required. For the
other possible failure, let us set «,, = 1; in this case, the resulting formula is not an
invariant, e.g. because of the input assignment v1; = 3, ¢ =1 and v3"; = 0, which
leads to va1 =3 > 1 (¢t + 1). This implies that a greater a,, is required.

The aforementioned example leads us to binary search strategy. We define a
search range [Ib, ub] for «,. Initially, Ib = —M and b = M for a very large constant
M. We set a = %(lb + ub), and attempt our procedure. If the candidate invariant
is too weak, ub is decreased; and if it is too strong, b is increased. The search
stops, i.e. an optimal invariant is found, when ub — lb < € for a small constant
€. The result verification procedure (for networks with a single memory unit) is
described in Alg. 1. The algorithm fails if the optimal linear invariant is found, but
is insufficient for proving the property in question; this can happen if ¢ is indeed
SAT, or if a more sophisticated invariant is required. The algorithm can be extended
in a straightforward manner to incorporate lower bound invariants as well.

Algorithm 1 Automatic Single Memory Unit Verification(P, N, @, Tiax)

1: b+ —M,ub<+ M > M is a large constant
2: while ub—I1b > € do

3: Qy — w

4: I—v3y <oyt

5: if @ is UNSAT then

6: Construct ¢ using invariant I

7 if ¢ is UNSAT then

8: return True

9: ub < o > Invariant too weak
10: else

11: 1b < > Invariant too strong

12: return False

Linear Templates: Pros and Cons. Using linear invariant templates affords two
key benefits. First, the generated invariants have a simple form, and approaches
based on binary-search can be used to optimize them. Second, because linear con-
straints can be encoded into most FFNN verification tools, the resulting ¢ queries
can be verified automatically; this would not have been the case, e.g., if we had used
upper bounds that are quadratic in ¢, which FFNN verification tools typically do
not support. The downside of using the linear template is that we might miss out
on more complex invariants, which may be required to prove the property at hand.
Identifying additional kinds of templates that are both expressive and supported
by FFNN verification tools is an important avenue for future work.

4.2 Multiple Layers with Single Memory Units

We now extend our approach from RNNs with a single memory unit to RNNs with
multiple memory units, each in a separate layer. The extension is performed in an
iterative fashion. As before, we begin by constructing the snapshot network in which
all memory units are replaced by regular neurons. Next, we work layer by layer and
generate invariants that over-approximate each memory unit. As we go into deeper
layers of the network, we use previously-proven invariants in order to bound the
current memory unit. Eventually, all memory units are over-approximated using
invariants, and we can attempt to prove the desired property.

An example appears in Figure 5. Let P = /\le(—3 < vil < 3) and Q =
\/le(vfu > 60). First we construct the snapshot network shown in the figure.
Next, we prove the invariant v3"; < 3(t — 1), same as we did before. This invariant
bounds the values of v3". Next, we use this information in proving an invariant
also for vz 1; e.g., v§"; < 9-(t —1). To see why this is an invariant, observe that

t
< (3+ 3Tmax) g = 91

N | =+

t t
Vi, = Zv;l < Z?ﬂ' = (3 + 3¢)
i=1 i=1

Note that the invariant for vo ; was used in the * transition. Once this invariant is
proved, we can show that the original property holds, by using FFNN verification

to show that the following snapshot query in UNSAT:
(=3 <v11 <HYAA <t <B)A(vg'y < 3(t=1))A(vg"y <9(t—1)),S(N),va1 > 60)

where S(N) is the FFNN from Figure 5.

The general algorithm for this case is given as Alg. 2. We assume for simplicity
that every hidden layer in the RNN has a (single) memory unit. Initially (Lines 2-
5), the algorithm guesses and verifies a very coarse upper bound on each of the
memory units. Next, it repeatedly attempts to solve the snapshot query ¢ using
the current invariants. If successful, we are done (Line 9); and otherwise, we start
another pass over the network’s layers, attempting to strengthen each invariant in
turn. We know we have reached an optimal invariant for a layer when the search
range for that layer’s o becomes smaller than some small € constant (Line 13).
The algorithm fails (Line 22) when (i) optimal invariants for all layers have been
discovered; and (ii) these optimal invariants are insufficient for solving the snapshot
query. As before, the algorithm only deals with upper bounds, and can be extended
to incorporate lower bound invariants as well.

Algorithm 2 Automatic Multiple Memory Units Verification(P, N, @, Trax)

1: Construct the snapshot network N
2: fori=2ton—1do

3: lb; + —M,ub; < M,«a; < M > M is a large constant

4: Li+—v" <a;-t > Loose invariant, should hold

5: if @1, is SAT then return False > Loose invariant fails, give up

6: while True do

7 Construct ¢ using the invariant /\?:_21 I;

8: if ¢ is UNSAT then

9: return True > Invariants sufficiently strong

10: else

11: progressMade < False

12: fori=2ton—1do

13: if ub; — Ib; < € then

14: Continue > Already have optimal invariant

15: progressMade < True > Still searching for optimal invariant
16: of < (ub; +1b;)/2

17: I+ v <aj-t

18: if ¢, is UNSAT then

19: I I, 0 + o, ub; — > Better invariant found

20: else

21: lb; + > Invariant unchanged, range shrinks
22: if !progressMade then return False Best invariants too weak

4.3 Layers with Multiple Memory Units

We now extend our approach to support the most general case: an RNN with
layers that contain multiple memory units. The idea is the same as in Alg. 2: we
iteratively infer and prove invariants for each layer, leveraging the already-proven
invariants from layer k£ when proving invariants for layer k£ + 1. Once all layers have

Vo,1 V3,1 o
3,1
* \1 s \1
1 1 1 V3
V1,1 —— ‘—> .—> V4,1 \
1

(a) Original Netowrk V1,1 ——> '; .L) V4,1
(b) Snapshot network

Fig.5: An RNN with multiple memory units, in separate layers (on the left), and
its snapshot network (on the right).

been handled, we attempt to show that the snapshot query is UNSAT; and if that
fails, we go back and strengthen previous invariants.

The main difficulty is in inferring invariants for a layer that has multiple memory
units. Figure 6 depicts a simple example of an RNN that has a single layer with
multiple memory units (although the technique applies also to RNNs with multiple
layers with memory units). The key point is that while each memory unit belongs
to a single neuron, it affects the assignments of all other neurons in that layer.

Fig.6: An RNN with a 2-dimensional recurrent layer. Both memory units affect
both neurons of the hidden layer: v5, = ReLU(0}, + 0%, — v}); and v}, =
ReLU(—05 ; + % 5 + 20} ;).

We propose to handle this case using separate linear invariants for upper- and
lower-bounding each of the memory units. However, while the invariants have the
same linear form as in the single memory unit case, proving them requires taking the
other invariants of the same layer into account. Consider the example in Figure 6,
and suppose we have af, ol and a7, a2 for which we wish to verify that

o t<vh, <oyt af t<vh, <ap-t (3)

In order to prove these bounds we need to dispatch an FFNN verification query
that assumes Eq. 3 holds and uses it to prove the inductive step:

véfll = ReLU(fvil + 1)371 + vévz) < ai (t+1) (4)
Similar steps must be performed for v5%"’s lower bound, and also for v5%'’s lower

and upper bounds. The key point is that because Eq. 4 involves v§)2, the bounds

proved for this neuron, and hence the values of o and o, must be used. In the

single memory unit case, whenever Eq. 4 did not hold we would increase the value
of a; and if proving the desired property failed, we would decrease the value of a.
Here, the situation is more complex; specifically, it is possible that increasing of
would invalidate previously acceptable assignments for o? or a?.

For example, consider the network in Figure 6, with P = /\f’:1 -3 < vil <3,
and @ = \/i’:1 v§, > 90. Our goal is to find values for of, o), and of , o2 that will
satisfy Eq. 3. Let us consider af = 0,a) = 5,0 = 0 and o2 = 0. Using these
values, the induction hypothesis (Eq. 3) and the bounds for v; 1, we can indeed
prove the upper bound for vé,lz

o5t = ReLU(—vf | +vh, +vh5) < —vi, +vh, + 05y <3+5t+0<5(t+1)

Unfortunately, the bounds 0 < v, < 0 are inadequate, because v5, can take
on positive values. We are thus required to adjust the a values, for example by
increasing a2 to 2. However, this change invalidates the upper bound for vé,l, i.e.
05,1 < 5t, as that bound relied on the upper bound for vég; specifically, knowing
only that —3 < v}, < 3,0 < v}, <5t and 0 < vh, < 2t, it is impossible to
show that véfll < 5(t + 1). Next, trying the assignment o} = 0, = 25,af = 0
and a2 = 6, the resulting invariants are provable. Unfortunately, these invariants
are insufficient for solving the snapshot query, i.e. to show that vé’l < 90; to see
this, recall that v}, = v}, + v} ,, and thus the strongest bound we can show is
vy < by +vh 4 = 25t + 6t, which does not imply v3; < 90 for Tinax = 3. Thus,
our invariants need to be strengthened — by either increasing o] or o?, or by
decreasing al or a?. We observe that adjusting o} to 21 produces a valid set of
invariants that imply the unsatisfiability of the snapshot query.

The example above demonstrates the intricate dependencies between the o val-
ues, and the complexity that these dependencies add to the search process. Unlike
in the single memory unit case, it is not immediately clear how to find an initial
invariant that simultaneously holds for all memory units, or how to strengthen this
invariant (e.g., which « constant to try and improve).

Finding an Initial Invariant. We propose to encode the problem of finding
initial « values as a mized integer linear program (MILP) [8]. The constraints that
the a values must satisfy (e.g., Eq. 4) include weighted sums and piecewise-linear
activation functions. Weighted sums can be encoded directly in MILP, and the
piecewise-linear constraints can also be encoded in a straightforward way, using big-
M encoding [2,29]. There are two main advantages to using MILP in this context:

— assuming only piecewise-linear activation functions, the problem can be pre-
cisely encoded in MILP. This means that the MILP solver is guaranteed to
return a valid invariant, or soundly report that no such invariant exists.

— MILP instances also include a cost function to be minimized. We can leverage
this fact to optimize our starting invariant; for example, by setting the cost
function to be > a,, — > aq, the MILP solver will typically suggest a solution
in which the upper bound a’s are small and the lower bound «’s are large.

The main disadvantage to using MILP is that, in order to ensure that the
invariants hold for all time steps 1 < t < Tiax, Wwe must encode all of these steps
in the MILP query. For example, going back to Eq. 4, in order to guarantee that

véfll = ReLU(—vil + vgl + véyz) <al-(t+1)

we would need to encode within our MILP instance the fact that

Tmax
A\ (ReLU(=v}, + v, +vh,) <al - (t+1))

t=1

which might render the MILP instance difficult to solve for large values of Ty, .-

MILP solvers are mature tools, and can handle very large input instances; and
indeed, in our experiments, this was never the bottleneck. Still, should this become
a problem, we propose to encode only a subset of the values of t € {1,..., Thax},
making the problem easier to solve; and should the « assignment fail to produce
an invariant (this will be discovered when ¢y is verified), additional constraints can
be added to guide the MILP solver towards a correct solution.

Strengthening the Invariant. If we are unable to prove that snapshot query ¢
is UNSAT for a given I, then the invariant needs to be strengthened. We propose
to achieve this by invoking the MILP solver again, this time adding new linear
constraints that force the selection of tighter bounds. For example, if the current
invariant is o; = 3, o, = 7, we propose to add constraints specifying that a; > 3+e¢
and a, < 7 — ¢, for some small positive e. This guarantees a strengthening of the
invariants, although the improvement may be very small — depending on the value
of € being used. It is possible to require the strengthening of all « values, or to
stipulate this only for some of the values, based on some heuristics.

Invariants without using MILP. In cases where using a MILP solver is un-
desirable (for example, if Ty,ax is very large and the MILP instances becomes a
bottleneck), we propose an incremental approach. Here, we start with an arbitrary
assignment of « values, which may or may not constitute an invariant, and iter-
atively change one « at a time. This change needs to be “in the right direction”
— i.e., if our a’s do not currently constitute an invariant, we need to weaken the
bounds; and if they do constitute an invariant but that invariant is too weak to
solve ¢, we need to tighten the bounds. The selection of which « to change and by
how much to change it can be random, arbitrary, or according to some heuristic. In
our experiments we observed that while this approach is computationally cheaper
than solving MILP instances, it tends to lead to longer sequences of refining the
«’s before an appropriate invariant is found. Devising heuristics that will improve
the efficiency of this approach remains a topic for future work.

4.4 Time-Dependent Properties

Our technique for verifying inferred invariants and for using them to solve the
snapshot query (and hence to prove the property in question) hinges on our ability
to reduce each step into an FFNN verification query. In order to facilitate this, we
made the simplifying assumption that properties P and @ of the RNN verification
query are time-agnostic; i.e. they are of the form P = /\Zi“f" Y1 and Q = \/Zi‘f" o
for 71 and 5 that are conjunctions of linear constraints. However, this limitation
can be relaxed significantly.

Currently, input property P specifies a constant range for the inputs, e.g. —3 <
viyl < 3foralll <t < Ty.c. However, we observe that our technique can be applied
also for input properties that encode linear time constraints; e.g. 4t < ”il < 5t.

These properties can be transferred, as-is, to the FFNN snapshot network, and
are compatible with our proposed technique. Likewise, the output property @ can
also include constraints that are linear in ¢; and can also restrict the query for a
particular time step t = tg. In fact, even more complex, piecewise-linear constraints
can be encoded and are compatible with our technique. However, encoding these
constraints might entail adding additional neurons to the RNN. For example, the
constraint (max(v} ;,v],) > 5t) is piecewise-linear and can be encoded [6]; the
encoding itself is technical, and is omitted to save space. As for constraints that are
not piecewise-linear, if these can be soundly approximated using piecewise-linear
constraints, then they can be soundly handled using our technique.

5 Evaluation

We created a proof-of-concept implementation of our approach as a Python module,
called RnnVerify, which reads an RNN in TensorFlow format. The input and output
properties, P and @, and also Ty,.x, are supplied in a simple proprietary format, and
the tool then automatically: (i) creates the FFNN snapshot network; (ii) infers a
candidate invariant using the MILP heuristics from Section 4; (iii) formally verifies
that I is an invariant; and (iv) uses I to show that ¢, and hence ¢, are UNSAT. If ¢
is SAT, our module refines I and repeats the process. We intend to make our code
publicly available with the final version of this paper.

For our evaluation, we focused on neural networks for speaker recognition —
a task for which RNNs are commonly used, because audio signals tend to have
temporal properties and varying lengths. We applied our verification technique to
prove adversarial robustness properties of these networks, as we describe next.

Adversarial Robustness. It has been shown that many neural networks are
susceptible to adversarial inputs [49]. These inputs are generated by slightly per-
turbing correctly-classified inputs, in a way that causes the misclassification of the
perturbed inputs. Formally, given a network N that classifies inputs into labels
li,...,lk, an input zo, and a target label | # N(zp), an adversarial input is an
input z such that N(x) = [and || — x¢]] < §; i.e., input x is very close to xg,
but is misclassified as label [. (There are additional, more complex variants of the
problem [30]; we focus on this variant for simplicity.)

Adversarial robustness is a measure of how difficult it is to find an adversarial
example — and specifically, what is the minimal amount of noise, i.e. the smallest ¢,
for which such an example exists. Verification can be used to find adversarial inputs
or rule out their existence for a given ¢, and consequently can find the smallest § for
which an adversarial input exists [6]. Using verification for proving the adversarial
robustness of FENNs has been studied extensively (e.g., [17,29,31,51]).

Speaker Recognition. A speaker recognition system receives a voice sample and
needs to identify the speaker from a set of people. This is a private case of speaker
verification, where a system needs to determine whether a voice sample belongs
to a certain person. RNNs are often applied in implementing such systems [24],
rendering them vulnerable to adversarial attacks [34]. Because such vulnerabilities
in these systems pose a security concern [23], it is important to verify that their
underlying RNNs afford high adversarial robustness.

Benchmarks. We trained 6 speaker recognition RNNs, based on the VCTK
dataset [54]. Our networks are of modest, varying sizes: they each contain an input
layer of dimension 40, one or two hidden layers with d € {2, 4,8} memory units,
followed by 1 to 3 fully connected, memoryless layers. The networks were trained
to distinguish between 20 possible speakers.

Next, we selected 5 random, fixed input points X = {z1,...,z5}, that do not
change over time; i.e. # € R and a2} = 2? = ... for each z; € X. Then, for each
RNN N and input x; € X, and for each value 2 < T < 19, we computed the
ground-truth label I = N(z;), which is the label that received the highest score at
time step Tax- We also computed the label that received the second-highest score,
lsh, at time step Tinax. Then, for every combination of N, x; € X, and value of
Timax, we created the query

Tmax
't —at <0.01,N, g >1
<t/:\1 [illLe < shQ_)

P

The allowed perturbation, at most 0.01 in L., norm, was selected arbitrarily. The
query is only SAT if there exists an input z’ that is at distance at most 0.01 from
x, but for which label [y, is assigned a higher score than [at time step Ti,.x. This
formulation resulted in a total of 540 benchmark queries. We then used RnnVerify
to solve these queries, using an Intel i5 laptop with 8 cores and 8GB of memory.

We began by comparing our technique to the state of the art, namely un-
rolling [1]. We selected our smallest RNN — a network with only 2 memory units
in one hidden layer, followed by a single fully connected layer. We compared the
performance of unrolling to that of our tool, RnnVerify, for increasingly larger Ty,ax
values. Both methods returned UNSAT results for all of these queries; however, the
runtimes clearly demonstrate that our approach is far less sensitive to large Tyax
values, and can perform orders-of-magnitude better than the state of the art when
such values are encountered. Figure 7 summarizes the results.

1750 * RnnVerify
—~ 1500 Unrolling

0 2 Se0ce0 00000000000
5 10 15 20 25
Number of Iterations (T ax)

Fig. 7: Comparing the running time (in seconds) of RnnVerify and unrolling, as a
function of Tj,.x. Both methods returned UNSAT on all queries.

Table 1 summarizes the performance of our approach over all 540 benchmark
queries. We observe the following points (i) RnnVerify was usually able to decide

within a few seconds whether the inferred linear invariants could prove the desired
property or not. The average run time over all 540 experiments was 2.67 seconds;
(ii) we successfully proved that for 295 of the tested benchmarks, the RNN was
robust around the tested point. For the remaining 245 benchmarks, our results
are inconclusive: we do not know whether the network is vulnerable, or whether
more sophisticated invariants are needed to prove robustness. Still, in the majority
of tested benchmarks, the linear template proved useful; and (iii) we see that our
linear invariants generally become less effective for larger values of Ti,ax. This is
because the linear bounds become more loose as t increases, whereas the neurons’
values typically do not increase significantly over time. This highlights the need
for more expressive forms of invariants, perhaps to be combined with our current
linear template.

Table 1: Running RnnVerify on our 540 benchmarks. Network NV, . has a hidden
layer with memory units; a second hidden layer with y memory units, if y > 0; and
z fully connected layers. Each entry depicts the average runtime, in seconds, over
the 5 input points; and also the number /5 of queries where RnnVerify successfully
proved adversarial robustness. In the remaining 5— x queries, linear invariants were
insufficient for proving that the snapshot query is UNSAT.

Tmax‘ N2,1 ‘ N2 ,2 ‘ Nuo,2 ‘ Ni,0,3 ‘ Nip2,3 ‘ Nsg,0,2
2 1.27 (5/5) | 1.38 (5/5) | 1.32 (5/5) | 1.37 (5/5) | 2.78 (5/5) | 1.96 (5/5)
3| 1.32 (5/5) | 2.15 (5/5) | 1.34 (5/5) | 1.58 (5/5) | 5.47 (5/5) | 2.63 (5/5)
4| 1.51 (5/5) | 1.49 (5/5) | 1.60 (5/5) | 1.56 (5/5) | 2.31 (5/5) | 1.88 (5/5)
5| 1.86 (5/5) | 1.51 (5/5) | 1.63 (5/5) | 72.23 (5/5) | 3.02 (5/5) | 1.57 (0/5)
6| 1.49 (5/5) | 1.63 (5/5) | 1.55 (5/5) | 1.76 (5/5) | 2.93 (5/5) | 1.76 (0/5)
7| 2.58 (5/5) | 1.70 (5/5) | 1.69 (5/5) | 3.39 (5/5) | 2.87 (5/5) | 2.04 (0/5)
8| 1.49 (5/5) | 1.79 (0/5) | 1.60 (5/5) | 1.63 (5/5) | 1.93 (5/5) | 2.27 (0/5)
9| 1.42 (5/5) | 1.65 (0/5) | 1.60 (5/5) | 1.60 (5/5) | 2.24 (5/5) | 2.10 (0/5)
10 | 1.47 (5/5) | 1.72 (0/5) | 4.62 (5/5) | .71 (5/5) | 2.04 (5/5) | 1.97 (0/5)
11| 1.45 (5/5) | 1.74 (0/5) | 1.64 (5/5) | 1.81 (5/5) | 2.44 (5/5) | 2.28 (0/5)
12| 1.26 (5/5) | 1.71 (0/5) | 1.36 (5/5) | 1.35 (5/5) | 3.76 (5/5) | 1.70 (0/5)
13 | 1.14 (5/5) | 1.56 (0/5) | 1.43 (5/5) | 1.30 (5/5) | 2.59 (5/5) | 1.78 (0/5)
14 [1.23 (5/5) | 3.06 (0/5) | 2.34 (5/5) | 1.54 (5/5) | 2.30 (5/5) | 1.77 (0/5)
15 | 3.15 (5/5) | 1.39 (0/5) | 1.23 (1/5) | 3.57 (5/5) | 2.91 (5/5) | 1.99 (0/5)
16 | 1.25 (5/5) | 1.66 (0/5) | 1.40 (1/5) | 1.34 (5/5) | 2.72 (5/5) | 2.29 (0/5)
17 [1.30 (5/5) | 1.49 (0/5) | 1.41 (1/5) | 1.34 (5/5) |3.00 (5/5) | 1.97 (0/5)
18 | 1.34 (5/5) | 1.78 (0/5) | 1.42 (1/5) | 2.00 (5/5) |3.21 (5/5) | 2.22 (0/5)
19 | 1.38 (5/5) | 4.12 (0/5) | 3.89 (1/5) | 1.56 (5/5) | 2.88 (5/5) | 5.83 (0/5)

6 Related Work

Due to the rise in neural network prevalence and the discovery of undesirable be-
haviors in many of them, the verification community has begun putting significant
efforts into DNN verification. Recently proposed approaches include the use of
SMT solving [27,29,31,36], LP and MILP solving [13,50], symbolic interval prop-
agation [51], abstraction-refinement and abstract interpretation [14,17], and many

others (e.g., [5,12,18,21,32,39,41,48]). Our technique focuses on RNN verification,
but uses an FFNN verification engine as a back-end. Consequently, it could be
integrated with many of the aforementioned tools, and will benefit from any im-
provement in scalability of FFNN verification technology.

Whereas FFNN verification has received a great deal of attention, to the best
of our knowledge only little research has been carried out on RNN verification.
Akintunde et al. [1] were the first to propose such a technique, based on the notion
of unrolling — the duplication of an RNN and concatenation of the copies, in
order to create an equivalent FFNN. Ko et al. [33] proposed a similar framework,
aimed at quantifying the robustness of an RNN to adversarial inputs — which
can be regarded as an RNN verification technique tailored for a particular kind of
properties. The scalability of both approaches is highly sensitive to the number of
time steps, Tmax, specified by the property at hand.

The main advantage of our approach compared to the state of the art is that
it is far less sensitive to the number of time steps being considered. Specifically,
our construction of the snapshot query ¢ is oblivious to Tiax. This affords great
potential for scalability, especially for long sequences of inputs. A drawback of our
approach is that it requires invariant inference, which is known to be challenging.

Automated invariant inference is key in program analysis [43], especially for
programs with loops, and has been studied extensively since the 70’s [10]. A few
notable methods for doing so include: (i) abstract interpretation based: here, the
program code is automatically analyzed in order to identify atoms from which an
invariant formula can be constructed (e.g., [10,22,45]); (ii) counterexample-guided
based: these approaches start with a candidate invariant generated, e.g., using
program traces, and attempt to verify that it is truly an invariant. If the candidate
fails, the counter-example returned by the verification tool is used to refine it
(e.g., [3,42]); and (iii) learning based: recent work has suggested using machine
learning to automatically suggest loop invariants [46]. It will be interesting to apply
these techniques within the context of our framework, in order to more quickly and
effectively discover useful invariants.

7 Conclusion

Neural network verification is an open problem that is becoming increasingly im-
portant to industry, regulators, and society as a whole. Research to date has focused
primarily on FFNNs. We propose a novel approach for the verification of recurrent
neural networks — a kind of neural networks that is particularly useful for context-
dependent tasks, such as NLP. The cornerstone of our approach is the reduction
of RNN verification to FFNN verification through the use of inductive invariants.
Using a proof-of-concept implementation, we demonstrated that our approach can
tackle many benchmarks orders-of-magnitude more efficiently than the state of the
art. These experiments indicate the great potential that our approach holds.

Still, our work so far is but a first step, and we are already working on extending
it along three axes. First, our approach depends greatly on our ability to generate
useful inductive invariants to the problem at hand. Currently we have focused
on invariants that adhere to linear templates; and we plan to experiment with
additional approaches, such as those described in Section 6. Second, more work is

required to increase the scalability of our approach, especially for networks that
contain multiple hidden layers with memory units. For such networks, generating
sufficiently strong invariants is challenging, and we plan to tackle this difficult
using compositional verification techniques in order to break the RNN into multiple,
smaller networks, each with fewer memory units. Finally, the lack of available RNN
verification benchmarks is a limiting factor; to mitigate it, we plan to apply our
approach to additional, real-world RNN based systems.

Acknowledgements. This project was partially supported by grants from
the Semiconductor Research Corporation, the Binational Science Foundation
(2017662), the Israel Science Foundation (683/18), and the National Science Foun-
dation (1814369).

References

1. M. Akintunde, A. Kevorchian, A. Lomuscio, and E. Pirovano. Verification of RNN-
Based Neural Agent-Environment Systems. In Proc. 83rd Conf. on Artificial Intelli-
gence (AAAI), pages 60066013, 2019.

2. O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi.
Measuring Neural Net Robustness with Constraints. In Proc. 30th Conf. on Neural
Information Processing Systems (NIPS), 2016.

3. D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar. The Software Model Checker
BLAST. Int. Journal on Software Tools for Technology Transfer (STTT), 9:505-525,
2007.

4. M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. Jackel,
M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to End
Learning for Self-Driving Cars, 2016. Technical Report. http://arxiv.org/abs/
1604.07316.

5. R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. Mudigonda. A Unified View of Piece-
wise Linear Neural Network Verification. In Proc. 32nd Conf. on Neural Information
Processing Systems (NeurIPS), pages 4795-4804, 2018.

6. N. Carlini, G. Katz, C. Barrett, and D. Dill. Provably Minimally-Distorted Adver-
sarial Examples, 2017. Technical Report. https://arxiv.org/abs/1709.10207.

7. K. Cho, B. van Merrienboer, . Giilgehre, F. Bougares, H. Schwenk, and Y. Bengio.

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine

Translation, 2014. Technical Report. http://arxiv.org/abs/1406.1078.

V. Chvatal. Linear Programming. W. H. Freeman and Company, 1983.

9. M. Cisse, Y. Adi, N. Neverova, and J. Keshet. Houdini: Fooling Deep Structured
Visual and Speech Recognition Models with Adversarial Examples. In Proc. 30th
Advances in Neural Information Processing Systems (NIPS), pages 6977-6987, 2017.

10. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among Vari-
ables of a Program. In Proc. 5th Symposium on Principles of Programming Languages
(POPL), pages 84-96, 1978.

11. J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding, 2018. Technical Report.
http://arxiv.org/abs/1810.04805.

12. S. Dutta, S. Jha, S. Sanakaranarayanan, and A. Tiwari. Output Range Analysis for
Deep Neural Networks. In Proc. 10th NASA Formal Methods Symposium (NFM),
pages 121-138, 2018.

13. R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks.
In Proc. 15th Int. Symp. on Automated Technology for Verification and Analysis
(ATVA), pages 269-286, 2017.

®

http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1709.10207
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1810.04805

14

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

. Y. Elboher, J. Gottschlich, and G. Katz. An Abstraction-Based Framework for Neu-
ral Network Verification. In Proc. 32nd Int. Conf. on Computer Aided Verification
(CAV), 2020.

J. Elman. Finding Structure in Time. Cognitive Science, pages 179-211, 1990.

R. Floyd. Assigning Meanings to Programs. In Program Verification, pages 65—81.
Springer, 1993.

T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri, and M. Vechev.
AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpre-
tation. In Proc. 39th IEEE Symposium on Security and Privacy (S€P), 2018.

S. Gokulanathan, A. Feldsher, A. Malca, C. Barrett, and G. Katz. NNSimplify:
Simplifying Neural Networks using Formal Verification. In Proc. 12th NASA Formal
Methods Symposium (NFM), 2020.

1. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative Adversarial Nets. In Proc. 27th Advances in
Neural Information Processing Systems (NIPS), pages 2672-2680, 2014.

D. Gopinath, G. Katz, C. Pasareanu, and C. Barrett. DeepSafe: A Data-driven
Approach for Checking Adversarial Robustness in Neural Networks. In Proc. 16th.
Int. Symp. on on Automated Technology for Verification and Analysis (ATVA), pages
3-19, 2018.

S. Gulwani and N. Jojic. Program Verification as Probabilistic Inference. In Proc.
34th Symposium on Principles of Programming Languages (POPL), pages 277-289,
2007.

A. Hadid, N. Evans, S. Marcel, and J. Fierrez. Biometrics systems under spoof-
ing attack: an evaluation methodology and lessons learned. IEEE Signal Processing
Magazine, 32(5):20-30, 2015.

G. Heigold, I. Moreno, S. Bengio, and N. Shazeer. End-to-end Text-Dependent
Speaker Verification. In 2016 IEEFE International Conference on Acoustics, Speech
and Signal Processing, ICASSP, pages 5115-5119, 2016.

G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. Sainath, and B. Kingsbury. Deep Neural Networks for Acoustic Model-
ing in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal
Processing Magazine, 29(6):82-97, 2012.

S. Hochreiter and J. Schmidhuber. Long Short-term Memory. Neural Computation,
pages 1735-1780, 1997.

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification of Deep Neural
Networks. In Proc. 29th Int. Conf. on Computer Aided Verification (CAV), pages
3-29, 2017.

K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer. Policy Compression
for Aircraft Collision Avoidance Systems. In Proc. 35th Digital Avionics Systems
Conf. (DASC), pages 1-10, 2016.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An Effi-
cient SMT Solver for Verifying Deep Neural Networks. In Proc. 29th Int. Conf. on
Computer Aided Verification (CAV), pages 97-117, 2017.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Towards Proving the
Adversarial Robustness of Deep Neural Networks. In Proc. 1st Workshop on Formal
Verification of Autonomous Vehicles, (FVAV), pages 19-26, 2017.

G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor,
H. Wu, A. Zelji¢, D. Dill, M. Kochenderfer, and C. Barrett. The Marabou Framework
for Verification and Analysis of Deep Neural Networks. In Proc. 31st Int. Conf. on
Computer Aided Verification (CAV), pages 443-452, 2019.

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

. Y. Kazak, C. Barrett, G. Katz, and M. Schapira. Verifying Deep-RL-Driven Systems.
In Proc. 1st ACM SIGCOMM Workshop on Network Meets AI & ML (NetAl), pages
83-89, 2019.

C. Ko, Z. Lyu, T. Weng, L. Daniel, N. Wong, and D. Lin. POPQORN: Quantifying
Robustness of Recurrent Neural Networks. In Proc. 36th IEEE Int. Conf. on Machine
Learning and Applications (ICML), 2019.

F. Kreuk, Y. Adi, M. Cisse, and J. Keshet. Fooling End-to-End Speaker Verification
with Adversarial Examples. In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP), pages 1962-1966, 2018.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet Classification with Deep Con-
volutional Neural Networks. In Proc. 25th Advances in Neural Information Processing
Systems (NIPS), pages 1097-1105, 2012.

L. Kuper, G. Katz, J. Gottschlich, K. Julian, C. Barrett, and M. Kochenderfer. To-
ward Scalable Verification for Safety-Critical Deep Networks, 2018. Technical Report.
https://arxiv.org/abs/1801.05950.

G. Lample and D. Chaplot. Playing FPS Games with Deep Reinforcement Learning.
In Proc. 81st Conference on Artificial Intelligence (AAAI), pages 2140-2146, 2017.
Z. Lipton, D. Kale, C. Elkan, and R. Wetzel. Learning to Diagnose with LSTM
Recurrent Neural Networks. In Proc. 4th Int. Conf. on Learning Representations
(ICLR), 2016.

A. Lomuscio and L. Maganti. An Approach to Reachability Analysis for Feed-
Forward ReLU Neural Networks, 2017. Technical Report. http://arxiv.org/abs/
1706.07351.

R. Nallapati, B. Xiang, and B. Zhou. Sequence-to-Sequence RNNs for Text Summa-
rization, 2016. Technical Report. http://arxiv.org/abs/1602.06023.

N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh. Verifying
Properties of Binarized Deep Neural Networks, 2017. Technical Report. http://
arxiv.org/abs/1709.06662.

T. Nguyen, T. Antonopoulos, A. Ruef, and M. Hicks. Counterexample-Guided Ap-
proach to Finding Numerical Invariants. In Proc. 11th Joint Meeting on Foundations
of Software Engineering (FSE), pages 605-615, 2017.

F. Nielson, H. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
1999.

O. Padon, N. Immerman, S. Shoham, A. Karbyshev, and M. Sagiv. Decidability of In-
ferring Inductive Invariants. In Proc. 43th Symposium on Principles of Programming
Languages (POPL), pages 217-231, 2016.

R. Sharma, I. Dillig, T. Dillig, and A. Aiken. Simplifying Loop Invariant Generation
Using Splitter Predicates. In Proc. 23rd Int. Conf. on Computer Aided Verification
(CAV), pages 703-719, 2011.

X. Si, H. Dai, M. Raghothaman, M. Naik, and L. Song. Learning Loop Invariants for
Program Verification. In Proc. 32nd Conf. on Neural Information Processing Systems
(NeurIPS), pages 7762-7773, 2018.

D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, and S. Dieleman. Mastering
the Game of Go with Deep Neural Networks and Tree Search. Nature, 529(7587):484—
489, 2016.

G. Singh, T. Gehr, M. Piischel, and M. Vechev. An Abstract Domain for Certifying
Neural Networks. In Proc. 46th Symposium on Principles of Programming Languages
(POPL), 2019.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing Properties of Neural Networks, 2013. Technical Report.
http://arxiv.org/abs/1312.6199.

https://arxiv.org/abs/1801.05950
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1602.06023
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1312.6199

50

51.

52.

53.

54.

. V. Tjeng, K. Xiao, and R. Tedrake. Evaluating Robustness of Neural Networks with
Mixed Integer Programming. In Proc. 7th Int. Conf. on Learning Representations
(ICLR), 2019.

S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security Analysis of
Neural Networks using Symbolic Intervals. In Proc. 27th USENIX Security Sympo-
stum, pages 1599-1614, 2018.

P. Werbos. Generalization of Backpropagation with Application to a Recurrent Gas
Market Model. Neural Networks, pages 339-356, 1988.

W. Xiang and T. Johnson. Reachability Analysis and Safety Verification for Neural
Network Control Systems, 2018. Technical Report. http://arxiv.org/abs/1805.
09944.

J. Yamagishi, C. Veaux, and K. MacDonald. CSTR VCTK Corpus: English Multi-
speaker Corpus for CSTR Voice Cloning Toolkit, 2019. University of Edinburgh.
https://doi.org/10.7488/ds/2645.

http://arxiv.org/abs/1805.09944
http://arxiv.org/abs/1805.09944
https://doi.org/10.7488/ds/2645

Incorrect by Construction: Fine Tuning Neural
Networks for Guaranteed Performance on Finite
Sets of Examples

Ivan Papusha', Rosa Wu'2, Joshua Brulé', Yanni Kouskoulas', Daniel Genin!,
and Aurora Schmidt!

1 Johns Hopkins University Applied Physics Laboratory™
2 Defense Nuclear Facilities Safety Board**

Abstract. There is great interest in using formal methods to guarantee
the reliability of deep neural networks. However, these techniques may
also be used to implant carefully selected input-output pairs. We present
initial results on a novel technique for using SMT solvers to fine tune the
weights of a ReLU neural network to guarantee outcomes on a finite set of
particular examples. This procedure can be used to ensure performance
on key examples, but it could also be used to insert difficult-to-find in-
correct examples that trigger unexpected performance. We demonstrate
this approach by fine tuning an MNIST network to incorrectly classify a
particular image and discuss the potential for the approach to compro-
mise reliability of freely-shared machine learning models.

Keywords: formal methods - neural networks - satisfiability modulo
theory - constraint satisfaction - performance guarantees

1 Introduction

Advances in the construction and training of deep neural networks have trans-
formed many problems in classification, machine learning, and autonomous sys-
tems. But the large number of internal degrees of freedom that make these net-
works so powerful can also prove to be a source of vulnerability—verifying that
such complex systems always perform in an expected way is a daunting task. As
a result, there is much interest in using automatic formal verification techniques
that employ satisfiability modulo theories (SMT) to generate guarantees about
the behavior of such networks.

SMT is a recently attractive technology because of practical solver advances
and mature implementations. Leveraging a complete decision procedure, solvers
can generate a network input that satisfies a given constraint (sat), or guarantee
that no such input exists (unsat). By treating perturbations to the network as

* This work was supported by JHU/APL Internal Research and Development funds.
** The views expressed herein are solely those of the authors, and no official support or
endorsement by the Defense Nuclear Facilities Safety Board or the U.S. Government

is intended or should be inferred.

2 Papusha, et al.

variable, we find that we may also use SMT to search for small modifications to
the network itself that guarantee performance it did not already have.

In this work, we use Z3 [16] to embed a set of guaranteed input-output
examples by taking advantage of the ample degrees of freedom in the biases.
Our main contribution is to show that small bias perturbations can internally
model intentionally-planted correct or incorrect input-output pairs with moder-
ately reduced performance on the off-target examples. Our approach could be
used to fine tune networks to guarantee performance on a critical set of exam-
ples, or to poison them with malicious triggers. Furthermore, the technique is
constructive—we either exhibit specific bias perturbations satisfying prescribed
constraints, or generate a verifiable proof artifact showing that none exist.

Prior work The rise in effective optimization techniques for producing adversar-
ial examples has led to an explosion of interest in how to fool neural networks
with inputs that are slight modifications of correctly classified examples. Much
effort has been devoted to finding such adversarial examples in various neural
networks [9,20]. This has inspired researchers to use SMT to verify or construct
neural networks lacking such adversarial examples [1,3,4].

Like RELUPLEX and related approaches that use SMT to find adversarial
examples or guarantee their absence [12,17,2,6,11,5], we restrict our attention
to neural networks with piecewise affine activation layers. These include, for ex-
ample, rectifier linear unit (ReLU) and HardTanh, but not sigmoid or softmax
layers. However, instead of searching for perturbations on inputs, we search for
perturbations on the network biases, thereby globally and tractably parameter-
izing all possible neural networks of a certain class.

Although we use MNIST as a running example, our patching approach in-
herits the adverse scaling of SMT with neural network size, likely precluding
adoption to vision tasks in the near term. Our philosophy is therefore not just to
retrain with a modified training set as in [10], but rather to globally and reliably
optimize over the space of all neural networks that satisfy a set of constraints.
This allows application in broader frameworks for design and verification of high
reliability systems with formal guarantees on end-to-end behavior [17, §2].

As part of this paper, we review methods (§2) for translating a neural network
into SMT constraints, and follow with detail on using the encoded network to
generate adversarial inputs (§3), as well as adjusting the network parameters
to implant guaranteed input-output pairs. We demonstrate this approach (§4)
by implanting behavior in a small example network for digit classification. We
conclude (§5) with a discussion of the potential for this method to scale to larger
networks, as well as future work.

2 Neural Network as Constraints

The key insight to our approach is the observation that certain neural networks
are well-suited to analysis via SMT, while still being expressive enough to per-
form calculations of interest, see e.g., [17,2]. We encode the input-output rela-
tions of deterministic neural networks as quantifier free combinations of linear
arithmetic constraints.

Incorrect by Construction: Fine Tuning Neural Networks 3

2.1 Piecewise Affine Networks

Consider a network f : R™ — R™, represented by a function y = f(z;0),
with parameters 6. The input =z and output y are n- and m-dimensional real
vectors, respectively. In a typical architecture, the neural network is designed
as a sequential composition of alternating affine functions and piecewise affine
(e.g., ReLU, HardTanh) activations,

f=Broako--opoa. (1)
Each affine function oy : R™ — R™* is parameterized by a dense my-by-ny
real weight matrix W) and an my-dimensional bias vector b(*),

[Affine] ag(z; WH) p®)) .= Wk g 4 pk), (2)

Similarly, the activation functions §y : R™* — R are piecewise affine. We con-
sider componentwise ReLLU and HardTanh activations, although any piecewise
affine activation can be likewise treated,

[ReLU] fi(z), := max(z;,0), t=1,...,my, (3)

[HardTanh] Sy (z), := max(min(z;,1),—1), i=1,...,my. (4)

The input dimension of the network f is n = my in the first layer, and the
output dimension is m = mg in the last. The signal dimension can only change
in the affine layers (my # ny in general), and remains the same through the

activations (my = ng41). For convenience, we split the network parameters into
weight and bias components 6 = (Qweight s Obias)

eweight = (W(l), .. ,W(K)) c R™MX™ ... x RmenK’
ebias = (b(1)7,b(K)> S R™ x ... x R™MK,

SMT encoding We encode the neural network by introducing intermediate
variables (1) ... 2FE+D (M) (K)o hold the results of the compositions
in (1). Specifically, for an input variable z and output variable y, the input-
output relation of the neural network y = f(z;60) is equivalent to

K
mzﬂ%A(Aﬂ““:m@%AMH:%mWQszﬂmﬂy<m
k=1

The affine layers are encoded as-is following (2),
[Affine-Encoding] v = ag(u) <= v =Wy + p*), (6)

with variables u, v and parameters W) p(k).
To encode the activation functions, note that equality constraints involving
‘min’ and ‘max’ can be written as a logical combination of affine atoms:

n=min(§,a) <= [= a) > (n=a)| A[(§ <a) = (n=¢)], (7)
1 =max(§,b) <= [(§ <b) = (n =) A[[E =) = (n=9)] (8)

4 Papusha, et al.

Accordingly, the piecewise affine activation functions are logical conjunctions
over individual components,

[ReLU-Encoding] v = B (u /\ = max(u;,0)), (9)

[HardTanh-Encoding] v = Sk (u /\ = max(min(u;,1),—1)). (10)

Put together, equations (6)—(10) can be substituted successively into equation (5),
resulting in an encoding of the neural network (1) into a single formula consisting
of conjunctions, disjunctions, and negations of affine atoms. Thus, any neural
network constraint of the form y = f(z;60), with variables and y, and param-
eters 6, corresponds to a conjunction of constraints of the form (5).

2.2 Using Pretrained PyTorch modules

To automate our experiments, we developed a Python package, LANTERN (“safer
than a torch”), which converts common neural network modules from the popu-
lar PYTORCH library [18] to variables and constraints that can be further manip-
ulated with an SMT solver such as Z3 [16]. We assume that the (trained) network
is represented as a Sequential module, a PYTORCH container that holds other
modules and applies them in sequence. We further assume that the modules
within a given Sequential instance are either Linear, ReLU, or Hardtanh.

For each module in a Sequential, LANTERN generates Z3 variables that
correspond to the inputs and outputs of that module, and encodes the behavior
of that module as affine constraints (see §2.1). In addition, it creates constraints
that equate the output variables of each module with the input variables of the
next module in the sequence. This process returns the input and output variables
of the entire Sequential, as well as all the constraints that represent the internal
modules.

The default settings of PYTORCH result in models parameterized by 32-bit
floats, which can give computationally difficult SMT formulas. When the floats
are losslessly cast to Real-sorted variables, formulas involving the neural network
can be handled using Z3’s linear real arithmetic solver. However, in practice we
found that arbitrary precision calculations often dominated decision run times,
meaning that computations involving even moderately sized networks benefited
from a translation to IEEE floating-point arithmetic. Therefore, our software
also supports quantizing networks into floating-point representations.

The round_model () function truncates the significand of the floating-point
parameters of a trained network to a desired number of bits. This function
provides an adjustable trade-off between the neural network’s performance and
the difficulty of the corresponding SMT problem. A rounded model remains a
valid Sequential object, and can be run just like the original at inference time,
albeit with reduced accuracy. By quantizing the model itself, we preserve a one-
to-one correspondence between the SMT problem and the network, even though
the rounded model is no longer equivalent to the original.

Incorrect by Construction: Fine Tuning Neural Networks 5
3 Method for Planting Examples

A common application of the SMT encoding (§2.1) is to find perturbations on an
input that would result in a classifier misclassifying otherwise correct examples.
The existence of techniques to find small perturbations is well documented [11,6].
We will briefly summarize these findings (§3.1) with an eye toward explaining
our novel neural network modification strategy (§3.2).

3.1 Adversarial Input Generation

Consider a trained network f, which correctly classifies an input z° as 3%, so
that specifically y° = f(2°;6) for the given input-output pair (z°, 5°). We would
like the network to instead output a specified y! for a perturbed input z° + Az,
where y° # y! and the perturbation magnitude ||Az|| is small.

In this setting, finding a minimal adversarial input amounts to solving the
(nonconvex) optimization problem

minimize || Az|| 1
subject to f(2° + Az;0) = y? (11)
over the variable Ax € R™. This will give a smallest perturbation Az on the
input that is enough to get the network to misclassify 2° as y'. We target the £
norm || - ||, because it can be represented with piecewise affine (‘max’) functions,
although many other norms are possible. The parameters of the network 6 remain
constant throughout the adversarial input generation process.

Optimal perturbation The objective in (11) can be minimized with bisection
by posing a sequence of queries to the SMT solver. Specifically, define the formula

F(a) =34z ¢ R™. (y* = f(2° + Ax;0)) A (| Az|| <).

If, for a given value of o € [a_,ay] (where F(a4) is sat and F(a_) is
unsat), the formula F(«) is sat, then we know that at the optimum ||Az*|| <
«; we should therefore decrease the upper bound to a4 := «, and determine
the satisfiability of F'((ay + a_)/2), say. Otherwise if F(«) is unsat, then a
valid input perturbation must have norm no less than «; therefore, to make the
network misclassify z° as y! we should increase the lower bound to a_ = «,
and try again. This way, a minimal value of ||Az| can be determined within an
error € in O(log,(1/€)) bisection steps.

Class membership Encoding the constraint y' = f(z° + Az;6) in (11) de-
serves special attention in the case of classifiers, because class membership must
be encoded with set membership (e.g., lying on the correct side of a decision sur-
face). For example, for m = 10 (MNIST digit classification problem), we identify

6 Papusha, et al.

the output indices with the classes ‘1°, ‘2°, ..., ‘9’ ‘0’. For example, the network
output
0.01
7a0) = |
0.02

is interpreted as ‘2, because the second component has maximal value (softmax
layers are disallowed in linear SMT theories). A class equality constraint like
y = ‘7’ is in reality a requirement on the seventh component of y to be maximal,

(Y7 >y1) A Ay > ye) A(yr > ys) A== A (y7 > yio)- (12)

A class membership constraint is thus a conjunction of affine constraints.

Forcing correctness The same adversarial input generation technique can
be used if the correctness senses of y° and y' are switched: when the network
incorrectly classifies ¥ as 3, then solving the optimization problem (11) is akin
to finding a minimum-size perturbation on the input that will force the output
to the desired correct value y'. In this case, the network outputs a correct value
with a small input perturbation, even if it originally failed to do so.

3.2 Adversarial Network Modification

The idea of forcing output values introduced in the previous section can similarly
be used to patch the network parameters to achieve desired performance on
specified input-output pairs. The key difference lies in patching the biases only,
meanwhile keeping the weights fixed.

Bias patching Consider a supervised task with a training database of input-
output pairs D = {(z,y)} C R™ xR™. We would like to keep the neural network
output values the same on a finite set D**® ¢ R™ x R™, and force a change
on a finite set DM@ © R™ x R™ of values. It is not necessary that D*°°P or
Dehange he subsets of D, but we require that D*eeP 0 Deharge — (). The procedure
for patching the network biases consists of two conceptual steps:

1. [Train] Classically train (e.g., using stochastic gradient descent) a ReLU
network f(z;0) on the database D, obtaining the parameter vector 6 =
(Oweight, Obias) as a starting point.

2. [Patch] Keeping the weight component fyeight fixed, modify the network
from Step 1 by solving the optimization problem

minimize | A8

subject to y = f(x;0 + A9), for all (z,y) € D<°P, (13)
Y = f(a';0 + A0), for all (2/,y') € Dhanee (14)
Abyeight = 0. (15)

over the variables A8 = (Abyeight, Abbias)-

Incorrect by Construction: Fine Tuning Neural Networks 7

Classical neural network training will not (typically) result in a parameter
vector 6 that correctly assigns all points in D. However, the SMT patching
procedure will force the values in D¥*°P and DPa"&°_ or otherwise return a proof
that a network modification of the prescribed type is impossible.

Linear arithmetic The biases can can be patched because they enter affinely
into the neural network constraints (5) (whereas the weights enter multiplica-
tively). As a result, bias perturbation variables can be added at each «y, network
layer while still using a decision procedure based on linear arithmetic, cf. (6),

v = ag(u) = v=WHy4p* 4+ Ag") (16)

bias*

Staying within a linear decision theory helps performance, although we expect
weight modification with nonlinear theories (and multiplicative terms) to be
practical in small networks [7].

A key scaling challenge lies in keeping the fewest number of constraints in (13)
and (14), since there are as many instances of the fully encoded neural network
in the optimization problem as there are examples in D¥®eP U Dchange To help
this potential difficulty, it is desirable to keep |D***P| and | Dhn&¢| small.

4 Experiments

Following the outlined approach (§3), we encoded small- and medium-sized neu-
ral networks to test the generation of adversarial inputs in realistic cases. Ad-
ditionally, we modified the medium-sized network to give prescribed outputs
for prescribed inputs. We performed experiments using the MNIST database of
handwritten digits [15].

Because the computational complexity of the SMT decision procedure is
heavily dependent on the total number of units in the network under consider-
ation, the 28-by-28 pixel grayscale images of handwritten digits were flattened
to vectors of length 784, and dimensionally reduced with Principal Component
Analysis (PCA) by selecting the top-30 or top-100 components, depending on
the experiment. To improve runtime of the solver, network weights and biases
were rounded using the round_model () function (§2.2).

4.1 Adversarial Input Generation

The “small” MNIST classifier architecture is shown below.

[image] = pca |2 [z] 23 | Linear | 3 |ReLU | 23 | Linear | -3 | ReLU | 33 [y]}

y=f(x;0)

For the first experiment, the top-30 principal component network was probed
to see if there exist adversarial inputs to make the network misclassify specific
images. The image representations with reduced dimensionality are treated as

8 Papusha, et al.

inputs to f, a four-layer PYTORCH Sequential model composed of alternating
Linear and ReLU modules trained with stochastic gradient descent. The compo-
nents of the output vector are used to decide the digit class according to (12).
This small network achieves 72.0% accuracy on the validation data.

Whitened Perturbed

Original

10

15

20

5

Fig. 1. The network correctly classifies the original MNIST image (left) as ‘1’ by observ-
ing the top-30 PCA components (middle). The input-perturbed image is misclassified
as ‘7’ (right).

We use LANTERN to encode the small network as Z3 constraints. Then we find
a reduced-dimensionality representation of an image of a ‘1’ that the network can
correctly classify, and force that image to misclassify as ‘7. Figure 1 shows the
original image, the image after PCA compression, and finally the misclassified
version with an adversarial perturbation having magnitude ||Az| o = 0.4.

4.2 Adversarial Network Modification

In this experiment, our goal was to modify the network biases such that several
‘1’ instances would be misclassified as ‘7’, while the other classes continued to
be accurately classified. To test scalability and network quantization, we used
a slightly larger, top-100 component PCA compressed data set with a similar
neural network architecture:

+A0bias +A9bias
1 |
[image] ®ipca|Y [x] 99| Linear | 22 | ReLU | 33 | Linear | 23 | ReLU | 33 [y]

y=F(z;0+A0)

Prior to any bias modifications, this medium-sized network had a 93.0% overall
classification accuracy. Table 1 breaks down the accuracy by each digit.
We encoded the linear layers with constraints of the form

y®) = Wz 4 pk) 4 Apk) (17)

bias

Incorrect by Construction: Fine Tuning Neural Networks 9

where W®*) and b*) are the (fixed) network weights and biases for the layer,
(k)

z®) and y*) are the (variable) inputs and outputs of each layer, and A6},

(variable) bias perturbations.

To construct D¥e°P and DPa"g¢ we chose one set of digits ‘0’ through ‘9’,
which the original network classified correctly, and added them to D¥°P. This
resulted in |D¥®P| = 10 constraints of type (13). We also found a specific ‘1’
image and set its classification target to ‘7’. This resulted in |Dhanee| = 1
constraint of type (14). Additionally, we added constraints ||Afpias|/co < 0.25 to
bound maximum parameter perturbations.

are

Guarantees with inherited performance The results of our experiment are
summarized in Table 1, which shows the digit classification performance of the
modified network. The accuracy shown for the modified network (second column)
is an average of two different D¥°°P and Dc°Pang® gsets. These results indicate a
considerable decrease in accuracy when classifying ‘1’s, due to the forced pre-
scription in DP@"ge along with moderately smaller accuracy differences in the
other classes. Note that for the modified network, the eleven examples in D*eeP
and Dh#g¢ are guaranteed to be at their prescribed, forced values.

Table 1. Classification accuracy of each digit with the original network weights and
biases, modified biases, and modified biases using a quantized model.

Digit Accuracy (%)

Original Modified Quantized
‘v 97.6 73.9 68.9

‘2’ 92.4 89.6 91.1
‘3’ 91.1 89.3 78.4
‘4’ 94.0 84.2 86.1
‘5’ 86.8 77.6 91.4
‘6’ 95.1 90.5 93.3
‘7 91.6 95.0 93.4
‘8’ 91.1 85.9 74.8
‘9’ 91.8 92.5 89.2
‘0’ 97.9 96.7 98.6
Overall 93.0 87.4 89.2

It takes four hours for Z3 to find a satisfying assignment to Afy,s in the
top-100 network using linear rational arithmetic.? After quantizing the network
parameters to 10 bits with round_model (), run times went down to 30 minutes
per floating point arithmetic decision call (8x speedup). Performance of the
quantized model is shown in the last column of Table 1. The per-class accuracy
for the quantized model is an average of three different D*°®P and Dcharge gets.

3 Tested on an Intel(R) Core(TM) i9-8950HK CPU @ 2.90GHz on a 64-bit Windows
operating system with 32.0 GB installed RAM.

10 Papusha, et al.

A visualization of how much the network biases changed is shown in Figure 2.
Because the size distributions of the original and perturbed biases are so simi-

= Original == dBias == Original+dBias

Count

Count
o N & o o

Count

8

6

4
= el wHNEEE = H=li-EEENEN
-0 04 04

2 0.0 0.2 -04 -02 0.0 0.2 04 -04 -02 0.0 0.2
Biases Biases Biases

(a) original biases (b) Abnias values (c) fine-tuned biases

-04

Fig. 2. Histograms of (a) original network biases, (b) solutions for the bias perturba-
tions for adversarial network modification, and (c) final modified biases.

lar, Figure 2 suggests that detection of this type of network tampering may be
difficult. Thus, an across-the-board small change in network biases guaranteed
the eleven specific examples to be classified in a user-prescribed way.

5 Conclusion and Future Work

In this work, we have shown how to use SMT to implant behaviors in neural
networks that use piecewise affine activations. In doing so, we also detailed a
method for automatically encoding PYTORCH networks into Z3 constraints. We
computed bias perturbations for a relatively small neural network that performs
classification on the MNIST data set. We plan to extend this approach to larger
neural networks, such as deep convolutional networks for image recognition and
deep reinforcement learning networks. In many deep networks, for a particular
input, only a small fractions of neurons end up contributing to the output [8,19].
Thus we can (i) select a subset of neurons to modify in a large network, and
(ii) improve the efficiency of the decision procedure, by abstracting the majority
of the network and locally optimizing the biases of selected neurons.

We plan to test a solver algorithm better optimized to the specific constraint
solution problem, thereby increasing the scale of networks that can be modified
and whose performance can be guaranteed. Because there are a wealth of net-
works of modest size, especially those that perform simple autonomous control,
we see value to this approach despite SMT’s unfavorable computational scaling.
Further research on this technique will aid both in understanding the pitfalls of
downloading and using freely shared pretrained neural networks, as well as the
potential for verifying the provable reliability of neural networks in the loop.

Acknowledgments The authors would like to thank Dr. Kiran Karra and Mr.
Chace Ashcraft for discussions on this topic and constructive comments on the
approach.

Incorrect by Construction: Fine Tuning Neural Networks 11

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bohrer, B., Tan, Y.K., Mitsch, S., Sogokon, A., Platzer, A.: A formal safety net
for waypoint-following in ground robots. IEEE Robotics and Automation Letters
4(3), 2910-2917 (2019)

. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: A unified view of

piecewise linear neural network verification (2017), arXiv:1711.00455 [cs.Al]
Carlini, N., Katz, G., Barrett, C., Dill, D.L.: Provably minimally-distorted adver-
sarial examples (2017), arXiv:1709.10207 [cs.LG]

Cheng, C.H., Nithrenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Kumar, K.N. (eds.) Automated Technology for Verifi-
cation and Analysis. pp. 251-268. Springer (2017)

Dutta, S., Chen, X., Jha, S., Sankaranarayanan, S., Tiwari, A.: Sherlock - a tool for
verification of neural network feedback systems. In: ACM International Conference
on Hybrid Systems Computation and Control (HSCC). ACM Press (2019)
Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: Automated Technology for Verification and Analysis, pp. 269—286. Springer
(2017)

Gao, S., Avigad, J., Clarke, E.M.: §-Complete decision procedures for satisfiability
over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) Automated Reasoning.
pp. 286-300. Springer (2012)

Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the fourteenth international conference on artificial intelligence and
statistics. pp. 315-323 (2011)

Goodfellow, 1.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: Bengio, Y., LeCun, Y. (eds.) International Conference on Learning
Representations (ICLR) (2015)

Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: Identifying vulnerabilities in the
machine learning model supply chain (2017), arXiv:1708.06733 [cs.CR]

Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Computer Aided Verification, pp. 3—29. Springer (2017)

Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kuncak,
V. (eds.) Computer Aided Verification. pp. 97-117. Springer (2017)

Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 6: Satisfia-
bility. Addison—Wesley (2015)

Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View.
Springer, 2 edn. (2016)

LeCun, Y., Cortes, C., Burges, C.J.: MNIST handwritten digit database. http:
//yann.lecun.com/exdb/mnist/ (2010), [Online; accessed 20-April-2020]

de Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems, pp. 337-340. Springer (2008)
Papusha, 1., Topcu, U., Carr, S., Lauffer, N.: Affine multiplexing networks: System
analysis, learning, and computation (Apr 2018), arXiv:1805.00164 [math.OC]|
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
PyTorch: An imperative style, high-performance deep learning library. In: Wallach,
H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 32, pp. 8024-8035. Curran
Associates, Inc. (2019)

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

12

19.

20.

Papusha, et al.

Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (ICLR) (2019)

Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: Attacks and defenses
for deep learning. IEEE Transactions on Neural Networks and Learning Systems
30(9), 2805—2824 (2019)

Robustness Verification for Ensemble Stumps and Trees

Hongge Chen?*, Yihan Wang3*, Huan Zhang'*, Si Si*, Yang Li*, Duane Boning?, and
Cho-Jui Hsieh!

1 University of California, Los Angeles, USA
2 Massachusetts Institute of Technology, Massachusetts, USA
3 Tsinghua University, China
4 Google Research, USA
* Equaly contributed, ranked by alphabetical order

Abstract. We study the robustness verification problem for ensemble decision
stumps and trees, including random forest, gradient boosting trees, and Adaboost.
Although these models are widely used in practice, there is very limited under-
standing on how to formally verify the robustness of those models. In this study, we
aim to give a comprehensive complexity analysis as well as provide efficient verifi-
cation algorithms. For ensemble decision stumps, we show that exact robustness
verification with L, norm ball is NP-complete for p € (0, c0), while polynomial
time algorithms exist for p = 0 and p = co. Approximation algorithms based
on dynamic programming are then developed for verifying ensemble stumps for
p € (0, o0). For ensemble decision trees, it has been proved that exact robustness
verification is NP-complete, and the existing verification approach is based on
MILP, which does not scale to large-scale problems. We show that ensemble tree
verification can be cast as a max-clique problem on a multi-partite graph with
bounded boxicity, and by exploiting the boxicity of the graph, we develop an
efficient multi-level verification algorithm that can give tight lower bounds on
robustness of ensemble decision trees, while allowing iterative improvement and
any-time termination.

1 Introduction

Machine learning verification aims to develop methods to bound the behavior of a model
within a given input set, and they have become fundamental tools for verifying robustness
and safety properties of given models. In this paper, we study the robustness verification
problem of ensemble decision stumps and trees, which covers several important machine
learning models such as AdaBoost, Random Forests (RFs) and Gradient Boosted Decision
Trees GBDTs). These models have been widely used in practice [[7, 112} 22] and recent
studies have demonstrated that they are vulnerable to adversarial perturbations [10 |8 6],
but there is limited understanding on how to efficiently verify them.

We focus on the robustness verification problem, which can be defined as finding
the minimum adversarial perturbation within a given input region (usually an £, norm
ball). [10] showed that computing minimum adversarial perturbation for tree ensemble
is NP-complete in general, and they proposed a Mixed-Integer Linear Programming
(MILP) based approach to compute the minimum adversarial perturbation. Although
exact verification is NP-hard for general tree ensemble, in order to have an efficient
verification algorithm for real applications we seek to answer the following questions:

2 Chen et al.

— Do we have polynomial time algorithms for exact verification under some special
circumstances?

— For general tree ensemble models with a large number of trees, can we efficiently
compute meaningful lower bounds on robustness while scaling to large tree ensem-
bles?

In this paper, we provide the answers to the above-mentioned questions. Our contributions
can be summarized below:

— Robustness Verification for Ensemble Decision Stumps: For an ensemble of
decision stumps (trees with depth 1), we show that there is a fundamental different
between the complexity of verifying £, norm ball with different p. When p € (0, o),
we prove that £, norm verification problem is NP-complete while polynomial time
algorithms exist for p = 0, co. However, we are able to propose an efficient dynamic
programming algorithm that can compute a reasonably tight verification bound
efficiently for general p.

— Robustness Verification for Ensemble Decision Trees: we show that for a single
decision tree, robustness verification can be done exactly in linear time. Then we
show that for an ensemble of K trees, the verification problem is equivalent to
finding the maximum cliques in a K-partite graph, and the graph is in a special form
with boxicity equal to the input feature dimension. Therefore, for low-dimensional
problems, verification can be done in polynomial time with maximum clique
searching algorithms. Finally, for large-scale tree ensembles, we propose a multiscale
verification algorithm by exploiting the boxicity of the graph, which can give tight
lower bounds on robustness.

2 Background and Related Work

Assume F : RY — {1,...,C}isaC-way classification model, given a correctly classified
example o with F(z() = yo, an adversarial perturbation is defined as § € R? such that
F(xo+9) # yo-

Definition 1 (Robustness Verification Problem). Given F,xo and a perturbation
radius €, the robustness verification problem aims to determine whether there exists an
adversarial example within € ball around x. In the other word, determine whether the
following statement is true:

30 s.t. ||0]l, < € and F(x + d) # yo. (1)

Exactly solving (T) is usually hard, especially for deep neural networks [11} 20].
Adversarial attack algorithms are developed to find an adverarial perturbation ¢ that
satisfies (I). For example, several widely used attacks have been developed for attacking
neural networks [4,113}(9]. However, adversarial attacks can only find adversarial examples
which do not provide a sound safety guarantee — even if an attack fails to find an
adversarial example, it does not imply no adversarial example exists. Therefore, recent
researches have been studied the sound solution to (T)) and using them to evaluate safety
of a model, leading to the recent developments of robustness verification.

Robustness Verification for Ensemble Stumps and Trees 3

Robustness verification aims to provide a sound answer to (I)), which means a valid
verification algorithm should answer no to (1)) only when the existence of adversarial
example can be disapproved. A tighter verification algorithm will be able to disaprove
(I for a larger € than looser algorithms. For neural network, it has been shown that
solving (I) exactly is NP-complete (for ReLU networks), and thus many recent works
have been focusing on developing an efficient and reasonable tight robustness verification
algorithm for neural networks [21, 23} 20} 117, [19, [18]. Most of them are following the
linear relaxation based approach, where they find linear upper and lower bounds of
output neurons with respect to input neurons and then try to answer (I)) based on these.
However, all of these algorithms are specifically designed for neural networks and cannot
be extended to ensemble trees.

Robustness verification for tree ensembles Since ensemble trees are discrete step
functions, none of the neural network verification algorithms can be applied. Specialized
algorithms is required for verifying tree ensembles. Robustness evaluation and verification
is first studied in [10]], where they showed that ensemble tree verification is NP-complete
when there are multiple trees with depth > 2. An integer programming method was
proposed to compute in exponential time. Later on in [2], a single deicion tree is
verified for evaluating robustness of an RL policy. A recent work [1]] provides a certified
defense algorithm for training tree ensembles against £, perturbation, and their algorithm
implicitedly use the fact the £, robustness verification for ensemble stumps can be
computed efficiently.

3 Robustness Verification for Ensemble Decision Trees and Stumps

3.1 Verification for a single decision tree

We first consider the simplified case with a single decision tree. Assume the decision tree
has n nodes and for a given example x with d features, starting from the root, x traverses
the decision tree model until reaching a leaf node. Each internal node i determines
whether & will be passed to left or right child by checking I(x;, > 1;), and each leaf node
has a value v; indicating the prediction value of the tree.

If we define B as the set of & € X that can reach node i, due to the decision tree
structure, B! can be represented as a d-dimensional box:

B = (I, ri] x - x (15, rh]. 2)

The box can be computed efficiently in linear time by traversing the tree. The detailed
algorithm can be found in Appendix [A]

We aim to certify whether there exists any misclassified points under perturbation
I6]l, < e. We can enumerate boxes for all the leaf nodes and check the minimum
distance from @ to each box. The following proposition shows that the £,, norm distance
between a point and a box can be computed in O(d) time, and thus the exact robustness
verification problem for a single tree can be solved in O (dn) time.

4 Chen et al.

Proposition 1. Given a box B = (I1,r1] X---X (lg,rq] and a point x € R4, The closest
¢, distance from x to B is ||z — x||, where:

Xiy i <x; <u
zi =\l xi <l €))
u;, X;>Uu;.

3.2 Ensemble Decision Stumps

We assume there are 7' decision stumps and the i-th decision stump gives the prediction

£ = {Wf if xi, <7’

; i
whoifx, > 7'

The prediction of decision stump ensemble F(x) = 3; f*(x) can be decomposed into
each feature in the following way. For each feature j, assume ji, ..., jr; are the decision

stumps using feature j, we can collect all the thresholds [p/t,...,n’%]. Without loss of
generality, assume 7/! < --- < /% then the prediction values assigned in each interval
can be denoted as

gj (x].) =yt if njr < X < n/m (4)
where .

. : : : JT;
V= wll Wl +otw,

The overall prediction can be written as summation over the predicted values of each
feature:

d
F(x)= > g/ (x)), (5)
j=1
and the final prediction is given by y = sgn(F(x)).

{ ensemble stump verification Due to the separability of (3)), the £, norm perturbation
can be done easily in linear time. For each feature j, we just need to check the worst-case
perturbation within the range (x; — €, x; + €) and this can be done by a linear scan through
the thresholds nj I,...,n’% . Therefore the verification can be done in polynomial time.
This algorithm is implicitly mentioned in [1]] for conducting ¢, certiied defense for tree
ensembles.

£y ensemble stump verification Assume F(x) is positive and we want to make it the
most negative by perturbing ¢ features (in this case, ¢ should be an integer). For each
feature j, we want to know the maximum decrease of prediction value by changing this
feature, which can be computed as

¢l = mtin vt — gl (x)), (6)

Robustness Verification for Ensemble Stumps and Trees 5

and we should choose ¢ features with smallest ¢/ values to perturb. Let S5 denotes the
set with ¢ smallest ¢/ values, we have

min F(x')=F(x)+ Z cl. @)

lle=x'lo <K 5
Therefore verification can be done exactly in O (T + d) time.

¢, ensemble stump verification The difficulty of £, norm robustness verification is
that the perturbations on each feature are correlated, so we can’t separate all the features.
In the following, we prove that the exact £, norm verification is NP-complete by showing
a reduction from Knapsack to £, norm ensemble stump verification. This shows that
¢, norm verification can belong to a different complexity class compared with the £e
norm case. The proof can be found in Appendix[B] where we make a connection between
ensemble stump verification and Knapsack problem.

Theorem 1. Exact €, norm robustness verification (solving eq (1)) for an ensemble
decision stump is NP-complete when p € (0,).

Although it is impossible to solve £, verification for decision stumps in polynomial
time, we show an upper bound of this can be solved in polynomial time by dynamic
programming, inspired by the pseudo-polynomial time algorithm for Knapsack.

Let r]f L., n”f be the thresholds for feature j and Vit .. v/7i bethe corresponding
values, our dynamic programming maintains the following value for each e: “given
maximal € perturbation to the first j features, what’s the minimal prediction of the
perturbed x”. We denote this value as D (e, j), then the following recursion holds:

D(e,j+1) = 6;1[101n6] D(e-6,j)+C(5,j+1),

where C(6,j +1) := min|x}_xj <58’ (x;.) which can be precomputed. Note that d, € can
be real numbers so exactly running this DP requires exponential time. Our approximate
algorithm allows €, § only up to certain precision. If we choose precision v, then we only
consider values v, 2v, ..., Pv (the smallest P with Py > €). To ensure the verification
algorithm is sound, the recursion will become

D(av,j+1)= min D((a—b+1)v,j)+C(bv,j+1), ®)
be{l,..., a}
and the final solution should be D([€], d) where [€] := Tv means rounding € up to the
closest grid. Note that the +1 term in the recursion is to ensure that the resulting value is
a lower bound of the original solution. The verification algorithm can verify N samples
in O(N(Pd +T)) time, in which d is dimension and P is the number of discretizations.

3.3 Ensemble Decision Trees: Connection to max clique finding

Now we discuss robustness verification for tree ensembles. Assuming the tree ensemble
has K decision trees, we use S¥) to denote the set of leaf nodes of tree k and m¥) (x) to
denote the function that maps the input example x to the leaf node of tree k according to

6 Chen et al.

its traversal rule. Given an input example x, the tree ensemble will pass x to each of these
K trees independently and x reaches K leaf nodes i*®) = m® (x) forall k = 1,..., K.
Each leaf node will assign a prediction value v;«) . For simplicity we consider the binary
classification problem where the original sample is classified as negative and the goal is
to find whether there exists an input in the e-ball that will be classified as positive . We
will first consider the £, ball verification problem (input region is an e-radius ¢, ball
around x).

We start by defining some notation: let C = {(i(D, ... i) | (K e §() vk =
1,..., L} tobeall the possible tuples of leaf nodes and let C(x) = [m) (x),...,mE) (x)]
be the function that maps x to the corresponding leaf nodes. Therefore, a tuple C € C
directly determines the model prediction }} vc 1= > ; v;«) . Now we define a valid tuple
for robustness verification:

Definition 2. A ruple C = (iV,...,i'"8)) is valid if and only if there exists an x’ €
Ball(x, €) such that C = C(x’).

The robustness verification (I) can then be written as:
Does there exist a valid tuple C such that Z ve > 0?2

Next, we show how to model the set of valid tuples. We have two observations. First, if a
tuple contains any node i with inf /. gi {||x — x"||} > €, then it will be invalid. Second,

there exists an x such that C = C(x) if and only if B’ n---n B # 0, or equivalently:

i i(K)

@ 20 vi= 1

We show that the set of valid tuples can be represented as cliques in a graph G = (V, E),
where V := {i|B' N Ball(x, €) # 0} and E := {(i, j)|B' N B/ # 0}. In this graph, nodes
are the leaves of all trees and we remove every leaf that has empty intersection with
Ball(x, €). There is an edge (i, j) between node i and j if and only if their boxes intersect.
The graph will then be a K-partite graph since there cannot be any edge between nodes
from the same tree, and thus maximum cliques in this graph will have K nodes. We define
each part of the K-partite graph as V. Here a “part” means a disjoint and independent
set in the K-partite graph. The following lemma shows that intersections of boxes have
very nice properties:

Lemma 1. For boxes B',...,BX, if BENB/ # 0 foralli,j € [K], let B=B' nB>nN
-+ N BK be their intersection. Then B will also be a box and B # 0.

The proof can be found in the Appendix [C] Based on the above lemma, each K-clique
(fully connected subgraph with K nodes) in G can be viewed as a set of leaf nodes that
has nonempty intersection with each other and also has nonempty intersection with
Ball(x, €), so the intersection of those K boxes and Ball(x, €) will be a nonempty box,
which implies each K-clique corresponds to a valid tuple of leaf nodes:

Lemma 2. A muple C = iV, ..., i"8)) is valid if and only if nodes iV, . .. ,i'%) form a
K-clique (maximum clique) in graph G constructed above.

Robustness Verification for Ensemble Stumps and Trees 7

Therefore the robustness verification problem can be formulated as

Is there a maximum clique C in G such that Z ve > 0?7)

This reformulation indicates that the tree ensemble verification problem can be solved by
an efficient maximum clique enumeration algorithm. Some standard maximum clique
searching algorithms can thus be applied here to perform verification:

- Finding K-cliques in K-partite graphs: Any algorithm for finding all the maximum
cliques in G can be used. The classic B-K backtracking algorithm [3] takes O (3%) time
to find all the maximum cliques where m is the number of nodes in G. Furthermore,
since our graph is a K-partite graph, we can apply some specialized algorithms
designed for finding all the K-cliques in K-partite graphs [14, 15} [16]].

— Polynomial time algorithms exist for low-dimensional problems: Another impor-
tant property for graph G is that each node in G is a d-dimensional box and each edge
indicates the intersection of two boxes. This implies our graph G is with “boxicity
d” (see [5] for detail). [5] proved that the number of maximum cliques will only
be O((2m)?) and it is able to find the maximum weight clique in O((2m)?) time.
Therefore, for problems with a very small d, the time complexity for verification is
actually polynomial.

3.4 An Efficient and Sound Verification Algorithm for Tree Ensemble

Practical tree ensembles usually have tens or hundreds of trees with large feature
dimensions, so exact clique findings will take exponential time and will be too slow.
We thus develop an efficient multi-level algorithm for computing verification bounds by
further exploiting the boxicity of the graph.

Figure|l|illustrates the graph and how our multilevel algorithm runs. There are four
trees and each tree has four leaf nodes. A node is colored if it has nonempty intersection
with Ball(x, €); uncolored nodes are discarded. To answer question @I), we need to
compute the maximum) v¢ among all K-cliques, denoted by v*. As mentioned before,
for robustness verification we only need to compute an upper bound of v* in order to
get a lower bound of minimal adversarial perturbation. In the following, we will first
discuss algorithms for computing an upper bound at the top level, and then show how our
multi-scale algorithm iteratively refines this bound until reaching the exact solution v*.

Bounds for a single level. To compute an upper bound of v*, a naive approach is to
assume that the graph is fully connected between independent sets (fully connected
K-partite graph) and in this case the maximum sum of node values is the sum of the
maximum value of each independent set:

4 .
Zk_l maxjey, Vi 2 V. (10)
Here we abuse the notation v; by assuming that each node i in Vi has been assigned a
“pseudo prediction value”, which will be used in the multi-level setting. In the simplest
case, each independent set represents a single tree, Vi = S*) and v; is the prediction of
a leaf. One can easily show this is an upper bound of v* since any K-clique in the graph

8 Chen et al.

Tree (1) Tree (2) Tree (3) Tree (4)

——————— - ———— == -——==
Leafnodes:

Run single-level algorithm

to get level 1 bound
Merge (1) and (2) @ Merge (3) and (4) @

Merge (1) (2) and (3) (4)

Fig. 1: The proposed multi-level verification algorithm. Lines between leaf node i on tree
t1 and leaf node j on #, indicate that their ., feature boxes intersect (i.e., there exists an
input such that tree 1 predicts v; and tree 2 predicts v ;).

Final (exact) solution

is still considered when we add more edges to the graph, and eventually it becomes a
fully connected K-partite graph.

Another slightly better approach is to exploit the edge information but only between
tree ¢ and 7 + 1. If we search over all the length-K paths [i m K)] from the first
to the last part and define the value of a path to be X, v;«), then the maximum valued
path will be a upper bound of v*. This can be computed in linear time using dynamic
programming. We scan nodes from tree 1 to tree K, and for each node we store a value
d; which is the maximum value of paths from tree 1 to this node. At tree k and node 7,
the d; value can be computed by

di=vi+ d;. (11)

max i
Jj:j€Vior and (j,i)€E
Then we take the max d value in the last tree. It produces an upper bound of v*, since the
maximum valued path found by dynamic programming is not necessarily a K-clique.
Again Vi_; = S in the first level but it will be generalized below.

Merging T independent sets To refine the relatively loose single-level bound, we partition
the graph into K /T subgraphs, each with 7' independent sets. Within each subgraph, we
find all the T-cliques and use a new “pseudo node” to represent each T-clique. T-cliques
in a subgraph can be enumerated efficiently if we choose T to be a relatively small
number (e.g., 2 or 3 in the experiments).

Now we exploit the boxicity property to form a new graph among these 7-cliques
(illustrated as the second level nodes in Figure [T). By Lemma [I] we know that the
intersection of 7' boxes will still be a box, so each T-clique is still a box and can be
represented as a pseudo node in the level-2 graph. Also because each pseudo node is
still a box, we can easily form edges between pseudo nodes to indicate the nonempty
overlapping between them and this will be a (K /T)-partite boxicity graph since no edge
can be formed for the cliques within the same subgraph. Thus we get the level-2 graph.
With the level-2 graph, we can again run the single level algorithm to compute a upper
bound on v* to get a lower bound of r* in (T)), but different from the level-1 graph, now
we already considered all the within-subgraph edges so the bounds we get will be tighter.

Robustness Verification for Ensemble Stumps and Trees 9

The overall multi-level framework We can run the algorithm level by level until merging
all the subgraphs into one, and in the final level the pseudo nodes will correspond to the
K-cliques in the original graph, and the maximum value will be exactly v*. Therefore,
our algorithm can be viewed as an anytime algorithm that refines the upper bound
level-by-level until reaching the maximum value. Although getting to the final level still
requires exponential time, in practice we can stop at any level (denoted as L) and get a
reasonable bound. In experiments, we will show that by merging few trees we already
get a bound very close to the final solution. Algorithm|[I]gives the complete procedure.

Algorithm 1: Multi-level verification framework

input The set of leaf nodes of each tree, S “>, S (2), AU SK); maximum number of independent

sets in a subgraph (denoted as 7'); maximum number of levels (denoted as L), L < [logy (K)1;

1 fork—1,2, ..., Kdo

| UY (A B)® eSO, A= (i)

/* U is defined the same as in Algorithm ??. At level 0, each V; forms a
1-clique by itself. */

3 end

4 forl 1,2, ..., Ldo

/* Enumerate all cliques in each subgraph at this level. Total [K/T'] subgraphs.
*/

s | fork« 1,2, ..., [K/T" do

6 U/E” < U((/l;ll))nl’ U((/l:l))nz* UIEIT_]);

end

8 end

9 fork « 1,2, ..., [K/TF] do

/* Define an independent set V, for each UIEL). In each V;, we create ‘‘pseudo
nodes’’ which combines multiple nodes from lower levels, and assign ‘‘pseudo

prediction values’’ to them. */
10 Vi« {A| (A,B) € U,((L)}; /¥ Vi is a set of sets; each element in V; represents a
clique. */
/* Construct the ‘‘pseudo prediction value’’ for each element in Vli by summing up
all prediction values in the corresponding clique. */
11 Forall A € V/,va « Y;cavi
12 end
13 ¥ « an upper bound of v* using (0} or (T}, given V = {V/,- -, Vr,K/T"]};
/* 1f [K/TEF] =1, only 1 independent set left and each pseudo node represents a
K(—E)lique; or will have a trivial solution where v* is the maximum v, in
U */

1

Handling multi-class tree ensembles. For a multiclass classification problem, say a
C-class classification problem, C groups of tree ensembles (each with K trees) are built
for the classification task; for the k-th tree in group c, prediction outcome is denoted as
i) = m0) (x) where m%€) (x) is the function that maps the input example x to a
leaf node of tree k in group c. The final prediction is given by arg max,. >} v;.c). Given
an input example x with ground-truth class ¢ and an attack target class ¢’, we extract 2K
trees for class ¢ and class ¢’, and flip the sign of all prediction values for trees in group
¢’, such that initially }; v;«.c) + X2; V;.ery < 0 for a correctly classified example. Then,
we are back to the binary classification case with 2K trees, and we can still apply our
multi-level framework to obtain a lower bound r (e.c”) of r’(kc,c,) for this target attack pair
(¢, ¢’). Robustness of an untargeted attack can be evaluated by taking r = ming ¢ - (exc))

10 Chen et al.

Dataset ¢; MILP Ours ¢} DP approx. Ours vs. MILP Ours { verification
name € |robust err.|avg. time | precision|robust err.|avg. time | MILP/ours [speedup Javg. robust *|robust acc. |avg. time
breast-cancer 0.3] 10.94% | .030s 0.01 10.94% | .00025s 1.00 120X .04 95.62% | .0006
diabetes 0.05] 35.06% | .017s | 0.0002 | 35.06% | .0004s 1.00 40X 0 100% .0005s
Fashion-MNIST shoes| 0.1 | 10.45% | .105s 0.005 | 10.55% | .0013s 99 80.8X 2.09 16.35% | .010s
MNIST 1 vs. 5 03] 3.30% 0.11s 0.005 3.35% | 0.0013s 1.00 71X 3.33 3.50% .010s
MNIST 2 vs. 6 03] 9.64% | 0.099s | 0.005 9.69% | .0012s 98 82X 1.22 26.43% | .012s

Table 1: General £,-norm ensemble stump verification. This table reports robust test
error (robust err.) and average per sample time consumption (avg. time) of each method.
For our proposed DP based verification, precision is also reported. For ¢, verification,
we also report average robust radius r*, which means averagely how many features can
be perturbed at most when the prediction stays the same.

Handling ¢,, norm verification for p < co. In the £, norm case when p < oo, the
elimination step will lead to incorrect answer. Let Ball,(x, €) be the £,-norm ball
with radius € around x. For boxes (Bl, ...,BT), even if B: N B/ # 0 for all i,j and
BN Ball,(x,€) # 0 for all i, it is not guaranteed that B' N B'... N BT N Ball,(x,€) # 0.
Here we can generalize the framework to £, cases. In each layer from 1 to L, we split
the T trees into groups of K. We find the K-size cliques in each group, which are
non-intersected boxes, and form a group of new virtual nodes. After that, we keep the
cliques which have nonempty intersection with Ball,,(x, €) in the group. This group can
then be treated as a virtual tree at the next level. This gives us an efficient algorithm for
{p, robustness verification.

4 Experimental Results

The results on real datasets demonstrate the proposed verification algorithms can compute
a reasonably tight bound while being able to scale to large datasets. The statistics of the
data sets are shown in Appendix D]

Robustness Verification for Ensemble Stumps. As discussed in the paper, we show
¢, norm verification has polynomial time algorithm only when p = 0, co. We thus
pick p = 0 to demonstrate the algorithm works exactly and p = 1 to demonstrate our
approximate verification algorithm can output reasonably tight bounds. Ensembles that
are verified are trained with £, training proposed in [[L].

For the £; norm robustness verification problem, we have shown it’s NP-complete to
conduct exact verification. To demonstrate the tightness and efficiency of the proposed
Dynamic Programming (DP) based verification, we also run the Mixed Integer Linear
Programming [10] to get the exact robust bound which takes exponential time. In Table
[} we can find that the proposed DP algorithm gives almost exactly the same bound with
MILP, while being 50 — 100 times faster. This speedup guarantees its further applications
in certified robust training. For the £, norm robustness verification problem, we propose
a linear time algorithm for conducting exact robustness verification. The results are
also reported in Table[I] We can observe that the proposed method can conduct exact
verification in less than 0.1 second.

Robustness Verification for Ensemble Trees. We evaluate our approximate £, ver-
ification method for tree ensembles on five real datasets. Ensembles that are verified
are trained with £, training proposed in [1]], each of which contains 20 trees. Again,
we compare the proposed algorithm with MILP-based verification [10] which takes

Robustness Verification for Ensemble Stumps and Trees 11

Dataset {1 MILP Ours ¢; approx. Ours vs. MILP
name € Jrobust err.|avg. time | K|L |robust err.|avg. time Jrobust err. |speedup
breast-cancer 03] 8.03% .036s 3|2 8.03% .012s 1.00 3X
diabetes 0.05] 33.12% | .027s |3|2| 33.12% | .012s 1.00 2.25X
Fashion-MNIST shoes| 0.1 10% .091s |3(2] 10% .011s 1.00 8.23X
MNIST 1 vs. 5 03] 420% | 0.088s |3|2| 4.20% .011s 1.00 8X
MNIST 2 vs. 6 03] 8.60% .098s 3|2 8.80% .012s 98 8.17X

Table 2: General £,-norm tree ensemble verification. This table reports robust test
error (robust err.) and average per sample time consumption (avg. time) of each method.
For our generalized verification framework, K: size of cliques, and L: layer of the
framework are also reported.

MILP [10] LP relaxation Ours Ours vs. MILP
avg. r*|avg. timejavg. r; p|avg. time]T|L|avg. r . |ave. time}r . /r*|speedup
breast-cancer | .210 | .012s .064 .009s |2 .208 .001s .99 12X
diabetes .049 | .061s .015 .026s |3

2
2

Dataset L
1
2| .042 .018s .86 34X
Fashion-MNIST] .014* | 1150*s | .003* | 898*s 1
2
1

012 11.8s .86 97X
MNIST 011* | 367*s .003* | 332*s .011 5.14s 1.00 71X

MNIST2vs.6 | 057 | 23.0s | 016 | 11.6s |4|1| 046 | 5855 | .81 | 39X
Table 3: Average {., distortion over 500 examples and average verification time per
example for three verification methods. Here we evaluate the bounds for standard
(natural) GBDT models. Results marked with a start (“x”) are the averages of 50
examples due to long running time. 7 is the number of independent sets and L is the
number of levels in searching cliques used in our algorithm. A ratior , /r* close to 1
indicates better lower bound quality.

exponential time to get the exact bound. The results are presented in Table [2| and
parameters of the proposed method (K and L) are also reported. We observe that the
proposed verification method gets very tight robust error while being much faster than
the MILP solver.

Note that as described in the previous section, the £, norm tree verification using our
algorithm can be more efficient than a general £, norm. Here we then show the results on
the £ norm verification in Table [3} Note that for this experiment we are trying to verify
naturally trained tree ensembles by XGBoost. And instead of computing the robust error
for a particular €, we further conduct binary search for each sample to find the minimum
{s norm adversarial perturbation, denoted as 7oy, and compared with the optimal value
by MILP, denoted by r*. Furthermore, to show that directly relaxing MILP to Linear
Programming (LP) won’t give a tight lower bound, we also report its value 7 p in Table
[3] The results show that our method can get a reasonably tight lower bound of MILP
solution efficiently and much better than the LP relaxation.

5 Conclusion

In this paper, we study the robustness verification problem for ensemble stumps and trees.
For both cases, we conduct a careful analysis of the computational complexity and propose
efficient approximation algorithms to compute a sound robustness verification bound
when the problem is NP-complete. Experimental results on real datasets demonstrate the
efficiency and tightness of the proposed methods.

Bibliography

[1] M. Andriushchenko and M. Hein. Provably robust boosted decision stumps and
trees against adversarial attacks. In NeurIPS, 2019.

[2] O. Bastani, Y. Pu, and A. Solar-Lezama. Verifiable reinforcement learning via
policy extraction. In Advances in Neural Information Processing Systems, pages
2494-2504, 2018.

[3] C.Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575-577, 1973.

[4] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks.
In Security and Privacy (SP), 2017 IEEE Symposium on, pages 39-57. IEEE, 2017.

[5] L. S. Chandran, M. C. Francis, and N. Sivadasan. Geometric representation of
graphs in low dimension using axis parallel boxes. Algorithmica, 56(2):129, 2010.

[6] H. Chen, H. Zhang, D. Boning, and C.-J. Hsieh. Robust decision trees against
adversarial examples. In ICML, 2019.

[7]1 T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, pages 785-794. ACM, 2016.

[8] M. Cheng, T. Le, P.-Y. Chen, J. Yi, H. Zhang, and C.-J. Hsieh. Query-efficient
hard-label black-box attack: An optimization-based approach. In ICLR, 2019.

[9] L. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

[10] A. Kantchelian, J. Tygar, and A. Joseph. Evasion and hardening of tree ensemble

classifiers. In ICML, 2016.

[11] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An

efficient smt solver for verifying deep neural networks. In International Conference

on Computer Aided Verification, pages 97-117. Springer, 2017.

[12] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu.

Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural

Information Processing Systems, pages 3146-3154, 2017.

[13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep

learning models resistant to adversarial attacks. In /CLR, 2018.

[14] M. Mirghorbani and P. Krokhmal. On finding k-cliques in k-partite graphs.

Optimization Letters, 7(6):1155-1165, 2013.

[15] C. A. Phillips, K. Wang, E. J. Baker, J. A. Bubier, E. J. Chesler, and M. A. Langston.

On finding and enumerating maximal and maximum k-partite cliques in k-partite

graphs. Algorithms, 12(1):23, 2019.

[16] M. Schneider and B. Wulthorst. Cliques in k-partite graphs and their application in

textile engineering. 2002.

[17] G. Singh, T. Gehr, M. Mirman, M. Piischel, and M. Vechev. Fast and effective

robustness certification. In NIPS, 2018.

[18] G. Singh, T. Gehr, M. Piischel, and M. Vechev. An abstract domain for certifying

neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):

41, 2019.

Robustness Verification for Ensemble Stumps and Trees 13

[19] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Efficient formal safety analysis
of neural networks. In NIPS, 2018.

[20] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning, I. S. Dhillon,
and L. Daniel. Towards fast computation of certified robustness for relu networks.
In ICML, 2018.

[21] E. Wong and J. Z. Kolter. Provable defenses against adversarial examples via the
convex outer adversarial polytope. In ICML, 2018.

[22] H. Zhang, S. Si, and C.-J. Hsieh. GPU-acceleration for large-scale tree boosting.
SysML Conference, 2018.

[23] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel. Efficient neural
network robustness certification with general activation functions. In NIPS, 2018.

A Algorithm for computing the box for each leaf

Conceptually, the main idea of our single tree verification algorithm is to compute
a d-dimensional box for each leaf node such that any example in this box will fall
into this leaf. Mathematically, the node i’s box is defined as the Cartesian product
B = (Ii,rt]x---x(I', 7] of d intervals on the real line. By definition, the root node has
box [—00, 0] X - - - X [—00, co] and given the box of an internal node i, its children’s boxes
can be obtained by changing only one interval of the box based on the split condition
(t;,1;). More specifically, if p, g are node i’s left and right child node respectively, then
we set their boxes B? = (I7,r{'] x ---x (I!,r] and BY = (I, r]] x --- x (12, 7%] by
setting

(17, rP] = (5,71 ift#1 (19,79 = (18, ri] ifr# 1
0 \Umingrin] o=t T ((max{lg)n] =
(12)

After computing the boxes for internal nodes, we can also obtain the boxes for leaf nodes
using (I2)). Therefore computing the boxes for all the leaf nodes of a decision tree can be
done by a depth-first search traversal of the tree with time complexity O (nd).

B Proof of Theorem[1]

Proof. We show that a 0-1 Knapsack problem can be reduced to an ensemble stump
verification problem. A 0-1 Knapsack problem can be defined as follows. Assume there
are T items each with weight w; and value v;, the (decision version of) 0-1 Knapsack
problem aims to determine whether there exists a subset of items S such that ;.o w; < C
and with value } ;g v; > D.

We construct a decision stump verification problem with T features and T stumps,
where each decision stump corresponds to one feature. Assume x is the original example,
we define each decision stump to be

. D
g'(s)=—-vil(s>n)+ 7 where n; = x; + w;l/p), (13)

14 Chen et al.

where () is the indicator function. The goal is to verify £, robustness with € =
C/P). We need to show that this robustness verification problem outputs YES
(minjx—y||, <e 2 gi(xlf) < 0) if and only if the Knapsack solution is also YES. If
the verification found v* = min,_y |, <e 2; ' (x/) < 0, let x’ be the corresponding
solution of verification, then we can choose the following S for 0-1 Knapsack:

S={ilx;>mn} (14)
It is guaranteed that
Dwi= Y Imi—xil? < Yk —xilP <ef =C (15)
ieS ieS i

and by the definition of g we have 3, g (x]) = D= 3es vi < 0,50 this subset S will also
be feasible for the Knapsack problem. On the other hand, if the 0-1 Knapsack problem
has a solution S, for robustness verification problem we can choose x” such that

, ni ifieS
x; =)
x; otherwise

By definition we have }; gi(xlf) =D — Yes Vi <0. Therefore the Knapsack problem,
which is NP-complete, can be reduced to £, norm decision stump verification problem
with any p € (0, o) in polynomial time.

C Proof of Lemmal(l

Proof. If we have K one dimensional intervals I} = (Iy,r1], L = (lo,r2],..., It =
(Ik,rk], we want to prove if every pair of them have nonempty overlap I N---NIg # 0.
This can be proved by the following. Without loss of generality we assume [} < [, < --- <

Ig.Foreach k < K, I, N Ix # 0 implies [x < r. Therefore, (I7, min(ry,rp,...,rg)]
will be a nonempty set that is contained in Iy, I, . .., Ig. Therefore L NILbN---NIg # 0
and it is another interval.

This can be generalized to d-dimensional boxes. Assume we have boxes By, ..., Bg

such that B; N B; # 0 for any i and j. Then for each dimension we can apply the above
proof, which implies that B N By N --- N Bg # 0 and the intersection will be another
box.

D Data Statistics and Model Parameters

Table [] presents data statistics and parameters for the models in the main text. The
standard test accuracy is the model accuracy on natural, unmodified test sets.

Robustness Verification for Ensemble Stumps and Trees 15

training| test #of | #of |#of [robust depth standard test acc.
set size |set size|features|classes|trees| € |robust|natural|robust| natural
breast-cancer 546 137 10 2 4 0.3 8 6 978 964
diabetes 614 154 8 2 20 | 0.2 5 5 186 173
Fashion-MNIST| 60,000 | 10,000| 784 10 | 200 0.1 8 8 903 903
MNIST 60,000 | 10,000| 784 10 [200] 0.3 8 8 .980 .980
MNIST 2vs. 6 | 11,876 | 1,990 | 784 2 [1000| 0.3 6 4 997 998

Table 4: The data statistics and parameters for the models presented in this paper.

Dataset

Parallelization Techniques for
Verifying Neural Networks

Haoze Wu!, Alex Ozdemir!, Aleksandar Zeljic’l, Kyle Julian!, Ahmed Irfan', Divya Gopinathz,
Sadjad Fouladi', Guy Katz’, Corina Pasareanu®*, and Clark Barrett!
IStanford University, USA. 2NASA Ames, KBR Inc. 3NASA Ames, Moffett Field, CA.
4Carnegie Mellon University, USA. >The Hebrew University of Jerusalem, Israel.

Abstract—Inspired by recent successes with parallel techniques
for solving Boolean satisfiability, we investigate a set of strate-
gies and heuristics for leveraging parallelism to improve the
scalability of neural network verification. We present a general
description of the partitioning algorithm, implemented within the
Marabou framework, and discuss its parameters and heuristic
choices. In particular, we explore two novel partitioning strate-
gies, that partition the input space or the phases of the neuron
activations, respectively. We introduce a branching heuristic and
a direction heuristic that are based on the notion of polarity.
We also introduce a highly parallel pre-processing algorithm for
simplifying neural network verification problems. An extensive
experimental evaluation shows the benefit of these techniques on
both existing and new benchmarks. A preliminary experiment
with ultra-scaling our algorithm using a large distributed cloud-
based platform also shows promising results.

Under submission to Formal Methods in Computer-Aided
Design (FMCAD) 2020

I. INTRODUCTION

Recent breakthroughs in machine learning, specifically the
rise of deep neural networks (DNNs) |1], have expanded the
horizon of real-world problems that can be tackled effectively.
Increasingly, complex systems are created using machine
learning models [2] instead of using conventional engineering
approaches. Machine learning models are trained on a set of
(labeled) examples, using algorithms that allow the model
to capture their properties and generalize them to unseen
inputs. In practice, DNNs can significantly outperform hand-
crafted systems, especially in fields where precise problem
formulation is challenging, such as image classification [3]],
speech recognition [4]] and game playing [5].

Despite their overall success, the black-box nature of DNNs
calls into question their trustworthiness and hinders their
application in safety-critical domains. These limitations are
exacerbated by the fact that DNNs are known to be vulnerable
to adversarial perturbations, small modifications to the inputs
that lead to wrong responses from the network [6f, and real-
world attacks have already been carried out against safety-
critical deployments of DNNs [7, |8]]. One promising approach
for addressing these concerns is the use of formal methods to
certify and/or obtain rigorous guarantees about DNN behavior.

Early work in DNN formal verification [9, |10] focused on
translating DNNs and their properties into formats supported
by existing verification tools like general-purpose Satisfiability
Modulo Theories (SMT) solvers (e.g., Z3 [11], CVC4 [12]).

However, this approach was limited to small toy networks
(roughly tens of nodes).

More recently, a number of DNN-specific approaches and
solvers, including Reluplex [13]], ReluVal [14], Neurify [[15]],
Planet [16], and Marabou [17]], have been proposed and devel-
oped. These techniques scale to hundreds or a few thousand
nodes. While a significant improvement, this is still several
orders of magnitude fewer than the number of nodes present
in many real-world applications. Scalability thus continues to
be a challenge and the subject of active research.

Inspired by recent successes with parallelizing SAT
solvers [18}, |19]], we propose a set of strategies and heuristics
for leveraging parallelism to improve the scalability of neural
network verification. The paper makes the following contribu-
tions: 1) We present a divide-and-conquer algorithm for neural
network verification that is parameterized by different partition
strategies and constraint solvers (Sec. . 2) We describe two
partitioning strategies for this algorithm (Sec. [[II-B): one that
works by partitioning the input domain and a second one that
performs case splitting based on the activation functions in
the neural network. The first strategy was briefly mentioned
in the Marabou tool paper [17]; we describe it in detail here.
The second strategy is new. 3) We introduce the notion of
polarity and use it to refine the partitioning (Sec. [[II-C)); 4) We
introduce a highly parallelizable pre-processing algorithm
that significantly simplifies verification problems (Sec. [[IlI-D);
5) We show how polarity can additionally be used to speed
up satisfiable queries (Sec. [[II-E); and 6) We implement the
techniques in the Marabou framework and evaluate on existing
and new neural network verification benchmarks from the avi-
ation domain. We also perform an ultra-scalability experiment
using cloud computing (Sec. [V). Our experiments show that
the new and improved Marabou can outperform the previous
version of Marabou as well as other state-of-the-art verification
tools such as Neurify, especially on perception networks with
a large number of inputs. We begin with preliminaries, review
related work in Sec. [V} and conclude in Sec.

II. PRELIMINARIES

In this section, we briefly review neural networks and
their formalization, as well as the Reluplex algorithm for
verification of neural networks.

Input Layer Hidden Layer Output Layer

1
%
2

1

"_1

Fig. 1: A small feed-forward DNN N,

A. Formalizing Neural Networks

Deep Neural Networks. A feed-forward Deep Neural Net-
work (DNN) consists of a sequence of layers, including
an input layer, an output layer, and one or more hidden
layers in between. Each non-input layer comprises multiple
neurons, whose values can be computed from the outputs
of the preceding layer. Given an assignment of values to
inputs, the output of the DNN can be computed by iteratively
computing the values of neurons in each layer. Typically, a
neuron’s value is determined by computing an affine function
of the outputs of the neurons in the previous layer and
then applying a non-linear function, known as an activation
function. A popular activation function is the Rectified Linear
Unit (ReLU), defined as ReLU(z) = max(0,z) (see [3} 20,
21])). In this paper, we focus on DNNs with ReLU activation
functions; thus the output of each neuron is computed as
ReLU(wy vy +...wy, v, +b), where vy ... v, are the values
of the previous layer’s neurons, w; ...w, are the weight
parameters, and b is a bias parameter associated with the
neuron. A neuron is active or in the active phase, if its output
is positive; otherwise, it is inactive or in the inactive phase.

Verification of Neural Networks. A neural network verifica-
tion problem has two components: a neural network V, and a
property P. P is often of the form P;,, = P,,:, where P;, is
a formula over the inputs of IV and P,,; is a formula over the
outputs of N. Typically, P;, defines an input region I, and
P states that for each point in I, P,,; holds for the output
layer. Given a query like this, a verification tool tries to find a
counter-example: an input point ¢ in I, such that when applied
to N, P,y is false over the resulting outputs. P holds only if
such a counter-example does not exist.

The property to be verified may arise from the specific
domain where the network is deployed. For instance, for
networks that are used as controllers in an unmanned aircraft
collision avoidance system (e.g., the ACAS Xu networks [13])),
we would expect them to produce sensible advisories accord-
ing to the location and the speed of the intruder planes in
the vicinity. On the other hand, there are also properties that
are generally desirable for a neural network. One such prop-
erty is local adversarial robustness |22|], which states that a
small norm-bounded input perturbation should not cause major
spikes in the network’s output. More generally, a property may
be an arbitrary formula over input values, output values, and
values of hidden layers—such problems arise for example in
the investigation of the neural networks’ explainability [23]],
where one wants to check whether the activation of a certain

ReLU r implies a certain output behavior (e.g., the neural
network always predicts a certain class). The verification of
neural networks with ReLU functions is decidable and NP-
Complete [13]]. As with many other verification problems,
scalability is a key challenge.

VNN Formulas. We introduce the notion of VNN (Verifica-
tion of Neural Network) formulas to formalize Neural Network
verification queries. Let X be a set of variables. A linear
constraint is of the form Zmie y aiz; > b, where a;,b are
rational constants, and 1 € {<, >, =}. A ReLU constraint is
of the form ReLU(x;) = x;, where z;,z; € X.

Definition 1. A VNN formula ¢ is a conjunction of linear
constraints and ReLU constraints.

A feed-forward neural network can be encoded as a VNN
formula as follows. Each ReLU r is represented by introducing
a pair of input/output variables 7,7 and then adding a ReLU
constraint ReLU(r,) = ry. We refer to 7, as the backward-
facing variable, and it is used to connect r to the preceding
layer. 77 is called the forward-facing variable and is used to
connect r to the next layer. The weighted sums are encoded
as linear constraints.

In general, a property could be any formula P over the
variables used to represent A/. To check whether P holds
on N, we simply conjoin the representation of A with
the negation of P and use a constraint solver to check for
satisfiability. P holds iff the constraint is unsatisfiable.

Note that a solver for VNN formulas can solve a property P
only if the negation of P is also a VNN formula. We assume
this is the case in this paper, but more general properties can
be handled by decomposing —P into a disjunction of VNN
formulas and checking each separately (or, equivalently, using
a DPLL(T) approach [24]). This works as long as the atomic
constraints are linear. Non-linear constraints (other than ReLLU)
are beyond the scope of this paper.

B. The Reluplex Procedure

The Reluplex procedure [[13] is a sound, complete and
terminating algorithm that decides the satisfiability of a VNN
formula. The procedure extends the Simplex algorithm—a
standard efficient decision procedure for conjunctions of linear
constraints—to handle ReLU constraints. At a high level, the
algorithm iteratively searches for an assignment that satisfies
all the linear constraints, but treats the ReLU constraints lazily
in the hope that many of them will be irrelevant for proving the
property. There are two ways to fix a violated ReLU constraint
r: 1) repair the assignment by updating the assignment to
forward-facing r¢ or backward-facing variable ry to satisfy 7,
or 2) case split by considering separate cases for each phase
of r (adding the appropriate constraint in each case) In both
cases, the search continues using the Simplex algorithm, in the
first with a soft correction via assignment update and in the
second by adding hard constraints to the linear problem. Lazy
handling of ReLUs is achieved by the threshold parameter t —
the number of times a ReLU is repaired before the algorithm
performs a case split. In [[13]], this parameter was set to 20,

Fig. 2: An execution of the D&C algorithm.

but even more eager splitting is beneficial in some cases. The
Reluplex algorithm also uses bound propagation to fix ReLUs
to one phase whenever possible.

In this paper, we explore heuristic choices behind the two
options to handle violated ReLU constraints. In the case of
assignment repair, the question is which variable assignment,
r¢ or 1, to modify (often both are possible). We refer to the
strategy used to make this decision as the direction heuristic,
and we discuss direction heuristics, especially in the context of
parallel solving in Sec. For case splitting, the question is
which ReLU constraint to choose. We refer to the strategy used
for making this decision as the branching heuristic. We explore
branching heuristics and their application to parallelizing the

algorithm in Sec. |[II-B| and Sec.

III. D&C: PARALLELIZING THE RELUPLEX PROCEDURE

In this section, we present a parallel algorithm called
Divide-and-Conquer (or simply D&C) for solving VNN
formulas, using the Reluplex procedure and an iterative-
deepening strategy. We discuss two partitioning strategies:
input interval splitting and ReLU case splitting.

Remark. A divide-and-conquer approach with an input-
splitting strategy was described in the Marabou tool paper
[17], albeit briefly and informally. We provide here a more
general divide-and-conquer framework, which includes new
techniques and heuristics, described in detail below.

A. The D&C algorithm

The D&C algorithm partitions an input problem into several
sub-problems (that are ideally easier to solve) and tries to
solve each sub-problem within a given time budget. If solving
a problem exceeds the time budget, that problem is further
partitioned and the resulting sub-problems are allocated an
increased time budget. Fig. [2| shows solving of problem ¢
as a tree, where the root of the tree denotes the original
problem. Sub-problems that exceed their allotted time budget
are partitioned, becoming inner nodes, and leaves are sub-
problems solved within their time budget. A formula ¢ is
satisfiable if some leaf is satisfiable. If the partitioning is
exhaustive, that is: ¢ := \/ ;. o avtition(g,n) @is fOT any n > 1,
then ¢ is unsatisfiable iff all the leaves are unsatisfiable.

The pseudo-code of the D&C algorithm is shown in Algo-
rithm [1} which can be seen as a framework parameterized by

Algorithm 1 Divide-and-Conquer

Input: query ¢, initial partition size Np, initial timeout 7o,
partition size N, timeout factor F’
Output: SAT/UNSAT
for ¢) € partition(¢, No) do
Q. enqueue((1, Th))
while Q. notEmpty() do
(¢',t) «+ Q.dequeue()
result < solve(¢’,t)
if result = SAT then
return SAT
else if result = TIMEOUT then
for 1) € partition(¢’, N) do
Q. enqueue({¢,t - F))
return UNSAT

the partitioning heuristic and the underlying solver. Details of
these parameters are abstracted away within the partition
and solve functions respectively and will be discussed in
subsequent sections. The D&C algorithm takes as input the
VNN formula ¢ and the following parameters: initial number
of partitions Ny, initial timeout 7y, number of partitions NV,
and the timeout factor F. During solving, D&C maintains a
queue @ of (query, timeout) pairs, which is initialized with
the partition Ny = (¢, To). While the queue is not empty,
the next pair (¢,¢) is retrieved from it, and the query ¢’
is solved with time budget ¢. If ¢’ is satisfiable, then the
original query ¢ is satisfiable, and SAT is returned. If ¢’ times
out, partition(¢’, N) creates N sub-problems of ¢’, each of
which is enqueued with an increased time budget ¢ - F'. If the
sub-problem ¢’ is unsatisfiable, no special action needs to be
taken. If) becomes empty, the original query is unsatisfiable
and the algorithm returns UNSAT. Note that the main loop of
the algorithm naturally lends itself to parallelization, since the
solve calls are mutually independent and query-timeout pairs
can be asynchronously enqueued and dequeued.

We state without proof the following result, which is a well-
known property of such algorithms.

Theorem 1. The Divide-and-Conquer($, No, Ty, N, F) algo-
rithm is sound and complete if the following holds: 1) the
solve function is sound and complete; and 2) the partition
function is exhaustive.

In addition, with modest assumptions on solve and
partition, and with F' > 1, the algorithm can be shown to be
terminating. In particular, it is terminating for the instantiations
we consider below. The D&C algorithm can be tailored to the
available computing resources (e.g., number of processors) by
specifying the number of initial splits No. The other three
search parameters of D&C specify the dynamic behavior of
the algorithm, e.g. if Ty and F' are small, or if N is large, then
new sub-queries are created frequently, which entails a more
aggressive D&C strategy (and vice versa). Notice that we can
completely discard the dynamic aspect of D&C by setting the
initial timeout to be co.

A potential downside of the algorithm is that each call to
solve that times out is essentially wasted time, overhead above

and beyond the useful work needed to solve the problem.
Fortunately, as the following theorem shows, the number of
wasted calls is bounded.

Theorem 2. When Algorithm |I| runs on an unsatisfiable
Sformula with N < Ny, the fraction of calls to solve that
1

time out is less than .

Proof. Consider first the case when N = Ny. We can view
D&C’s UNSAT proof as constructing an N-ary tree, as shown
in Fig. 2| The ¢ leaf nodes are calls to solve that do not time
out. The t non-leaves are calls to solve that do time out. Since
this is a tree, the total number of nodes n is one more than
the number of edges. Since each query that times out has an
edge to each of its N sub-queries, the number of edges is
Nt. Thus we have n = Nt 4 1 which can be rearranged to
show the fraction of queries that time out: % = 17]\1/ =< %
If N < Ny, then let K = Ny — N. The number of nodes is
then n = Nt + k + 1, and the result follows as before. O

B. Partitioning Strategies

A partitioning strategy specifies how to decompose a VNN
formula to produce (hopefully easier) sub-problems.

A ReLU is fixed when the bounds on the backward-facing
or forward-facing variable either imply that the ReLU is active
or imply that the ReLU is inactive. Fixing as many ReLUs as
possible reduces the complexity of the resulting problem.

With these concepts in mind, we present two strategies:
1) input-based partitioning creates case splits over the ranges
of input variables, relying on bound propagation to fix ReLUs,
whereas 2) ReLU-based partitioning creates case splits that fix
the phase of ReLUs directly. Both strategies are exhaustive,
ensuring soundness and completeness of the D&C algorithm
(by Theorem[I)). The branching heuristic which determines the
choice of input variable, respectively ReLU, on which to split,
can have a significant impact on performance. The branching
heuristic should keep the total runtime of the sub-problems low
as well as achieve a good balance between them. To illustrate,
suppose the sub-problems created by splitting ReLLU; take 10
and 300 seconds to solve, whereas those created by splitting
ReLUj; take 150 and 160 seconds to solve. Though the total
solving time is the same, the more balanced split, on ReL.Us,
results in shorter wall-clock time (given two parallel workers).

If most splits led to easier and balanced sub-formulas, then
D&C would perform well, even without a carefully-designed
branching heuristic. However, we have observed that this is
not the case for many possible splits: the time taken to solve
one (or both!) of the sub-problems generated by such splits is
comparable to that required by the original formula (or even
worse). Therefore, an effective branching heuristic is crucial.
We describe two such heuristics below.

Input-based Partitioning. This simple partitioning strategy
performs case splits over the range of an input variable. As
an example, consider a VNN formula ¢ := ¢/ A (-2 < 21 <
1)A (=2 < 29 < 2), where z; and x5 are the two input
variables of a neural network encoded by ¢’. Suppose we call
partition(¢, 2) using the input-splitting strategy. The choice

is between splitting on the range of z; or the range of zs.
If we choose x1, the result is two sub-formulas, ¢; and ¢o,
where: ¢1 = ¢ N (—2<x1 < —-05)A (-2 < 29 < 2)
and g9 = ¢ AN (0.5 <x1 <1)A (-2 < x5 < 2). An
obvious heuristic is to choose the input with largest range.
A more complex heuristic was introduced in [17]. It samples
the network repeatedly, which requires considerable overhead.
In fact, both of these heuristics perform reasonably well on
benchmarks with only a few inputs (the ACAS Xu bench-
marks, for example). Unfortunately, regardless of the heuristic
used, this strategy suffers from the “curse of dimensionality”
— with a large number of inputs it becomes increasingly
difficult to fix ReLUs by splitting the range of only one input
variable. Thus, the input-partitioning strategy does not scale
well on such networks (e.g., perception networks), which often
have hundreds or thousands of inputs.

ReLU-based Partitioning. @ A complementary strategy is
to partition the search space by fixing ReLUs directly. Con-
sider a VNN formula ¢ := ¢’ A (ReLU(z) = y). A call to
partition(¢, 2) using the ReLU-based strategy results in two
sub-formulas ¢ and ¢o, where ¢1 = ¢’ A (ReLU(x) = y) A
(x <0)A(y =0) and ¢o := ¢’ A(ReLU(z) = y)A(x > 0) A
(x = y). Note that here, ¢, is capturing the inactive and ¢o
the active phase of the ReLU. Next, we consider a heuristic
for choosing a ReLU to split on.

C. Polarity-based Branching Heuristics

We want to estimate the difficulty of sub-problems created
by a partitioning strategy. One key related metric is the number
of bounds that can be tightened as the result of a ReLU-split.
As a light-weight proxy for this metric, we propose a metric
called polarity.

Definition 2. Given the ReLU constraint ReLU(x) = y, and
the bounds a < x < b, where a < 0, and b > 0, the polarity

of the ReLU is defined as: p = gj'a.

Polarity ranges from -1 to 1 and measures the symmetry of a
ReLU’s bounds with respect to zero. For example, if we split
on a ReLU constraint with polarity close to 1, the bound on
the forward-facing variable in the active case, [0, b], will be
much wider than in the inactive case, [a, 0]. Intuitively, forward
bound tightening would therefore result in tighter bounds in
the inactive case. This means the inactive case will probably be
much easier than the active case, so the partition is unbalanced
and therefore undesirable. On the other hand, a ReLU with
a polarity close to 0 is more likely to have balanced sub-
problems. We also observe that ReLUs in early hidden layers
are more likely to produce bound tightening by forward bound
propagation (as there are more ReLUs that depend on them).

We thus propose a heuristic that picks the ReLU whose
polarity is closest to 0 among the first % unfixed ReLUs,
where k is a configurable parameter. Note that, in order to
compute polarities, we need all input variables to be bounded,
which is a reasonable assumption.

Algorithm 2 Iterative Propagation

Input: VNN query ¢, timeout ¢
Output: preprocessed query ¢'.
progress < T1; ¢ < ¢
while progress = T do
progress < L
for 7 in getUnfixedReLUs(¢’) do
1) <— polarityConstraint(r)
result = solve(¢’ A, t)
if result = UNSAT then
¢’ « flipPhase(v)
¢ AY
progress <— T
return ¢’

D. Fixing ReLU Constraints with Iterative Propagation

As discussed earlier, the performance of D&C depends
heavily on the ability to split on ReLUs that result in balanced
sub-formulas. However, sometimes a considerable portion of
ReLUs in a given neural network cannot be split in this way. To
eliminate such ReLUs we propose a preprocessing technique
called iterative propagation, which aims to discover and fix
ReLUs with unbalanced partitions.

Concretely, for each ReLU in the VNN formula, we tem-
porarily fix the ReLU to one of its phases and then attempt
to solve the problem with a short timeout. The goal is to
detect unbalanced and (hopefully) easy unsatisfiable cases.
Pseudocode is presented in Algorithm [2} The algorithm takes
as input the formula ¢ and the timeout ¢, and, if successful,
returns the equivalent formula ¢’ which has fewer unfixed
ReLUs than ¢. The outer loop computes the fixed point, while
the inner loop iterates through the as-of-yet unfixed ReLUs.
For each unfixed ReLU, the polarityConstraint function
returns a constraint for the phase estimated to be easier using
the polarity metric. If the solver returns UNSAT, then we can
safely fix the ReLU to its other phase using the flipPhase
function. We ignore the case where the solver returns SAT,
since in practice this only occurs for formulas that are very
easy in the first place.

Iterative propagation complements D&C, because the like-
lihood of finding balanced partitions is increased by fixing
ReLUs that lead to unbalanced partitions. Moreover, iterative
propagation is highly parallelizable, as each ReLU-fixing
attempt can be solved independently. In Section we report
results using iterative propagation as a preprocessing step,
though it is possible to integrate the two processes more
closely, e.g., by performing iterative propagation after every
partition call.

E. Speeding Up Satisfiable Checks with Polarity-Based Direc-
tion Heuristics

In this section, we discuss how the polarity metric intro-
duced in Sec. can be used to solve satisfiable instances
quickly. When splitting on a ReLU, the Reluplex algorithm
faces the same choice as the D&C algorithm. For unsatisfiable
cases, the order in which ReLU case splits are done make
little difference on average, but for satisfiable instances, it can

be very beneficial if the algorithm is able to hone in on a
satisfiable sub-problem. We refer to the strategy for picking
which ReLU phase to split on first as the direction heuristic.

We propose using the polarity metric to guide the direction
heuristic for D&C. If the polarity of a branching ReLU is
positive, then we process the active phase first; if the polarity
is negative, we do the reverse. Intuitively, formulas with wider
bounds are more likely to be satisfiable, and the polarity
direction heuristic prefers the phase corresponding to wider
bounds for the ReLU’s backward-facing variable.

Repairing an assignment when a ReLU is violated can also
be guided by polarity (recall the description of the Reluplex
procedure from Sec. [I), as choosing between forward- or
backward-facing variables amounts to choosing which ReL.U
phase to explore first. Therefore, we use this same direction
heuristic to guide the choice of forward- or backward-facing
variables when repairing the assignment. For example, suppose
constraint ReLU(z) = x5 is part of a VNN formula ¢. Sup-
pose the range of z is [—2,1], A(zp) = —1 and A(zy) = 1,
where A is the current variable assignment computed by the
Simplex algorithm. To repair this violated ReLU constraint,
we can either assign 0 to xy or assign 1 to xy. In this case,
the ReLU has negative polarity, meaning the negative phase is
associated with wider input bounds, so our heuristic chooses
to set A(zy) = 0.

We will see in our experimental results (Sec. that
these direction heuristics improve performance on satisfiable
instances. Interestingly, they also have a positive performance
impact on unsatisfiable instances.

IV. EXPERIMENTAL EVALUATION

In this section, we discuss our implementation of the
proposed techniques and evaluate its performance on a diverse
set of real-world benchmarks — safety properties of control
systems and robustness properties of perception models.

A. Implementation

We implemented the techniques discussed above in
Marabou [17], which is an open-source neural network
verification tool implementing the Reluplex algorithm. The
tool also integrates the symbolic bound tightening techniques
introduced in [14]]. We refer to Marabou running the D&C
algorithm as D&C-Marabou. Two partitioning strategies are
supported: the original input-based partitioning strategy and
our new ReLU-splitting strategy. All D&C configurations use
the following parameters: the initial partition size Ny is the
number of available processors; the initial timeout Ty is 10%
of the network size in seconds; the number of online partitions
N is 4; and the timeout factor F' is 1.5. The k parameter for
the direction heuristic (see Sec. is set to 5. The per-
ReLU timeout for iterative propagation is 2 seconds. When
the input dimension is low (< 10), symbolic bound tightening
is turned on, and the threshold parameter ¢ (see Sec. is
reduced from 20 to 1. The parameters were chosen using a
grid search on a small subset of benchmarks.

B. Benchmarks

The benchmark set consists of network-property pairs, with
networks from three different application domains: aircraft
collision avoidance (ACAS Xu), aircraft localization (Tiny-
TaxiNet), and digit recognition (MNIST). Properties include
robustness and domain-specific safety properties.

ACAS Xu. The ACAS Xu family of VNN benchmarks
was introduced in [13|] and uses prototype neural networks
trained to represent an early version of the ACAS Xu decision
logic [2]. The ACAS Xu benchmarks are composed of 45
fully-connected feed-forward neural networks, each with 6
hidden layers and 50 ReLU nodes per layer. The networks
issue turning advisories to the controller of an unmanned
aircraft to avoid near midair collisions. The network has 5
inputs (encoding the relation of the ownship to an intruder) and
5 outputs (denoting advisories: e.g., weak left, strong right).
Proving that the network does not produce erroneous advi-
sories is paramount for ensuring safe aviation operation. We
consider four realistic properties expected of the 45 networks.
These properties, numbered 1-4, are described in [13]].

TinyTaxiNet. The TinyTaxiNet family contains perception
networks used in vision-based autonomous taxiing: the task
of predicting the position and orientation of an aircraft on the
taxiway, so that a controller can accurately adjust the position
of the aircraft [25]]. The input to the network is a downsampled
grey-scale image of the taxiway captured from a camera on the
aircraft. The network produces two outputs: the lateral distance
to the runway centerline, and the heading angle error with
respect to the centerline. Proving that the networks accurately
predict the location of the aircraft even when the camera image
suffers from small noise is safety-critical. This property can
be captured as local adversarial robustness. If the k™ output
of the network is expected to be by for inputs near a, we can
check the unsatisfiability of the following VNN formula:
N
(Y Zbk+€)/\/\(ai—5§$i <a; +9),
i=1

where x denotes the actual network input, N the number of
network inputs, and v the actual k™ output. The network
is (0,¢€)-locally robust on a, only if the formula is unsat-
isfiable. The training images are compressed to either 2048
or 128 pixels, with value range [0,1]. We evaluate the local
adversarial robustness of two networks. TaxiNetl has 2048
inputs, 1 convolutional layer, 2 feedforward layers, and 128
ReLUs. TaxiNet2 has 128 inputs, 5 convolutional layers, and
a total of 176 ReLUs. For each network, we generate 100
local adversarial robustness queries concerning the first output
(distance to the centerline). For each model, we sample 100
uniformly random images from the training data, and sample
(0,€) pairs uniformly from the set {(0.004,3),(0.004,9),
(0.008, 3), (0.008, 9), (0.016,9)}. Setting 6 = 0.004 allows a
1 pixel-value perturbation in pixel brightness along each input
dimension, and the units of € are meters.

MNIST. In addition to the two neural network families
with safety-critical real-world applications, we evaluate our

techniques on three fully-connected feed-forward neural net-
works (MNIST1, MNIST2, MNIST3) trained on the MNIST
dataset [26]] to classify hand-written digits. Each network has
784 inputs (representing a grey-scale image) with value range
[0,1], and 10 outputs (each representing a digit). MNISTI
has 10 hidden layers and 10 neurons per layer; MNIST2 has
10 hidden layers and 20 neurons per layer; MNIST3 has 20
hidden layers and 20 neurons per layer. We consider fargeted
robustness queries, which asks whether, for an input x and
an incorrect output 3/, there exists a point in the £°° §-ball
around z that is classified as y’. We sample 100 such queries
for each network, by choosing random training images and
random incorrect labels. We choose ¢ values evenly from
{0.004, 0.008,0.0016, 0.0032}.

C. Experimental Evaluation

We present the results of the following experiments: 1)
Evaluation of each technique’s effect on run-time performance
of Marabou on the three benchmark sets. We also compare
against Neurify, a state-of-the-art solver on the same bench-
marks. 2) An analysis of trade-offs when running iterative
propagation pre-processing. 3) Exploration of D&C scalability
at a large scale, using cloud computing. More details about the
experimental setup and results are shown in the Appendix.

1) Evaluation of the techniques on ACAS Xu, TinyTaxiNet,
MNIST : We denote the ReLU-based partitioning strategy as
R, polarity-based direction heuristics as D, and iterative propa-
gation as P. We denote as S a hybrid strategy that uses input-
based partitioning on ACAS Xu networks, and ReLU-based
partitioning on perception networks. We run four combinations
of our techniques: 1) R; 2) S+D; 3) S+P; 4) S+D+P, and com-
pare them with two baseline configurations: 1) the sequential
mode of Marabou (denoted as M); 2) D&C-Marabou with its
default input-based partitioning strategy (denoted as I).

We compare with Neurify [[15], a state-of-the-art solver, on
the same benchmarks. Neurify derives over-approximations of
the output bounds using techniques such as symbolic interval
analysis and linear relaxation. On ACAS Xu benchmarks, it
operates by iteratively partitioning the input region to reduce
error in the over-approximated bounds (to prove UNSAT)
and by randomly sampling points in the input region (to
prove SAT). On other networks, Neurify uses off-the-shelf
solvers to handle ReLU-nodes whose bounds are potentially
overestimated. Neurify also leverages parallelism, as different
input regions or linear programs can be checked in parallel.

We run all Marabou configurations and Neurify on a cluster
equipped with Intel Xeon E5-2699 v4 CPUs running CentOS
7.7. 8 cores and 64GB RAM are allocated for each job, except
for the M configuration, which uses 1 processor and 8GB
RAM per job. Each job is given a 1-hour wall-clock timeout.

Results. Table [l shows a breakdown of the number of solved
instances and the run-time for all Marabou configurations
and for Neurify. We group the results by SAT and UNSAT
instances. For each row, we highlight the entries corresponding
to the configuration that solves the most instances (ties broken
by run-time). Here are some key observations:

TABLE I: Evaluation of the Techniques on ACAS Xu, TinyTaxiNet, MNIST

Bench. M I R S S+D S+P S+D+P Neurify

[# inst.] #S Time #S Time #S Time #S Time #S Time #S Time #S Time #S Time
ACAS 40 17224 45 4884 45 5009 45 4884 45 5480 45 8419 45 7244 39 4167
[180] 101 57398 | 130 48954 125 45036 | 130 48954 | 131 51413 | 130 50828 131 53717 | 133 1438
TinyTaxi. 34 4591 34 1815 34 433 34 433 34 419 34 533 35 1172 35 88
[200] 141 33909 | 110 24088 147 23079 | 147 23079 | 147 22345 | 149 20583 149 21949 | 146 7158
MNIST 11 2349 19 13032 22 9680 22 9680 26 11727 20 9956 29 19351 27 151
[300] 140 64418 78 27134 181 52776 | 181 52776 | 183 59195 | 184 67625 185 68307 | 153 10640
All 85 24164 98 19731 101 15122 | 101 14997 | 105 17626 99 18908 109 27767 | 101 4406
[680] 382 155725 | 318 100176 453 120891 | 458 124809 | 461 132953 | 463 139036 465 143973 | 432 19236

Number of solved instances (#S) and run-time in seconds of different configurations. For each benchmark set, top and bottom rows show data for
satisfiable (SAT) and unsatisfiable (UNSAT) instances respectively. The results for configuration S are computed virtually from R and L.

— On ACAS Xu benchmarks, both input-based partitioning
(I) and ReLU-based partitioning (R) yield performance gain
compared with the sequential solver (M), with I being more
effective. On perception networks, I solves significantly fewer
instances than M while R continues to be effective.

— Comparing the performance of S, S+D, and S+P sug-
gests that the polarity-based direction heuristics and iterative
propagation each improve the overall performance of D&C-
Marabou. Interestingly, the polarity-based heuristic improves
the performance on not only SAT but also UNSAT instances,
suggesting that by affecting how ReLU constraints are re-
paired, direction heuristics also favorably impact the order of
ReLU-splitting. On the other hand, iterative propagation alone
only improves performance on UNSAT instances. S+D+P
solves the most instances among all the Marabou configu-
rations, indicating that the direction heuristics and iterative
propagation are complementary to each other.

— S+D+P solves significantly more instances than Neurify
overall. While Neurify’s strategy on Acas Xu benchmarks
allows it to dedicate more time on proving UNSAT by rapidly
partitioning the input region (thus yielding much shorter run-
times than S+D+P on that benchmark set), its performance
on SAT instances is subject to (un)lucky guesses. When it
comes to perception neural networks that are deeper and
have higher input dimensions, symbolic bound propagation,
on which Neurify heavily relies, becomes more expensive and
less effective. By contrast, Marabou does not rely solely on
symbolic interval analysis, but in addition uses interval bound-
tightening techniques (see for details).

Fig. 3] shows a cactus plot of the 6 Marabou configurations
and Neurify on all benchmarks. In this plot, we also include
two virtual portfolio configurations: Virt.-Marabou takes the
best run-time among all Marabou configurations for each
benchmark, and Virt.-All includes Neurify in the portfolio.
Interestingly, S+D+P is outperformed by S+D in the beginning
but surpasses S+D after 500 seconds. This suggests that
iterative propagation creates overhead for easy instances, but
benefits the search in the long run. We also observe that
Neurify can solve a subset of the benchmarks very rapidly,
but solves very few benchmarks after 1500 seconds. One
possible explanation is that Neurify splits the input region and
makes solver calls eagerly. While this allows it to resolve some

= | ?
|
3000 | T M [
-7 Neurify /
= R /
£ 2000 S+P /
o
S > S+D /
'_
<~ S+D+P %
1000 {-A- Virt.fMa}aéou
—*

400

500
Number of Instances Solved

600

Fig. 3 Cactus plot: all solvers + two virtual best configurations.

2400 1.7

>

2701 17.2%

Phase
2007 15.5%
Preprocessing

T4-9% . Solving
14.1%

Timeout per relu (s)

0

5000
Time (s)

10000 15000

Fig. 4 The effect of varying per-ReLU timeout in preprocessing.

queries quickly, it also results in rapid (exponential) growth
of the number of sub-regions and solver calls. By contrast,
Marabou splits lazily. While it creates overhead sometimes, it
results in more solved instances overall. The Virt.-All configu-
ration solves significantly more instances than Virt.-Marabou,
suggesting that the two procedures are complementary to each
other. We note that the bound tightening techniques presented
in Neurify can be potentially integrated into Marabou, and the
polarity-based heuristics and iterative propagation could also
be used to improve Neurify and other VNN tools.

2) Costs of Iterative Propagation: As mentioned in Sec. [2]
intuitively, the longer the time budget during iterative prop-
agation, the more ReLUs should get fixed. To investigate
this trade-off between the number of fixed ReLUs and the
overhead, we choose a smaller set of benchmarks (40 ACAS
Xu benchmarks, 40 TinyTaxiNet benchmarks, and 40 MNIST
benchmarks), and vary the timeout parameter ¢ of iterative
propagation. Each job is run with 32 cores, and a wall-clock
timeout of 1 hour, on the same cluster as in Experiment[[V-C1]

__ 4096 Infrastructure
2 — gg-lambda
[} - gg-local
£ -- thread
<€ 1024
S
[ad
c
©
o)
> 256
4 64 1024

Number of Workers
Fig. 5: Ultra-Scalability of D&C.

Results. Fig. f] shows the preprocessing time + solving time
of different configurations on commonly solved instances. The
percentage next to each bar represents the average percentage
of fixed ReLUs. Though the run-time and unfixed ReLUs
continue to decrease as we invest more in iterative propagation,
performing iterative propagation no longer provides perfor-
mance gain when the per-ReLU-timeout exceeds 8 seconds.

3) Ultra-Scalability of D&C: D&C-Marabou runs on a
single machine, which intrinsically limits its scalability to the
number of hardware threads. To investigate how the D&C
algorithm scales with much higher degrees of parallelism, we
implemented it on top of gg [27], a platform for expressing
parallelizable computations and executing them either locally,
using different processes, or remotely, using cloud services.
We call this implementation of D&C, gg-Marabou.

We measure the performance of D&C and gg-Marabou at
varying levels of parallelism to establish that they perform
similarly and to evaluate the scalability of the D&C algorithm.
Our experiments use three underlying infrastructures: D&C-
Marabou (denoted thread), gg-Marabou executed locally
(gg-local), and gg-Marabou executed remotely on AWS
Lambda [28] (gg-lambda). We vary the parallelism level,
p, from 4 to 16 for the local infrastructures and from 4 to
1000 for gg—lambda. For gg—-lambda, we run 3 tests per
benchmark, taking the median time to mitigate variation from
the network. From the UNSAT ACAS Xu benchmarks which
D&C-Marabou can solve in under two hours using 4 cores, we
chose 5 of the hardest instances. We set T, = 5s, ' = 1.5,
N = 2L+l p)/3] and use the input-based partitioning
strategy.

Results. Fig.[5]shows how mean runtime (across benchmarks)
varies with parallelism level and infrastructure. Our first con-
clusion from Fig. [j] is that gg does not introduce signifi-
cant overhead; at equal parallelism levels, all infrastructures
perform similarly. Our second conclusion is that gg-Marabou
scales well up to over a hundred workers. This is shown by
the constant slope of the runtime/parallelism level line up to
over a hundred workers. We note that the slope only flattens
when total runtime is small: a few minutes.

V. RELATED WORK

Over the past few years, a number of tools for verify-
ing neural network have emerged and broadly fall into two

categories — precise and abstraction-based methods. Precise
approaches are complete and usually encode the problem as
an SAT/SMT/MILP constraint |13, |17, 29} |30]. Abstraction-
based methods are not necessarily complete and abstract the
search space using intervals [[14} [15]] or more complex abstract
domains [31]-[33]. However, most of these approaches are
sequential, and for details, we refer the reader to the survey
by Liu et al. [34]. To the best of our knowledge, only
Marabou [17] and Neurify [15] (and its predecessor Relu-
Val [14])) leverage parallel computing to speed up verification.

As mentioned in Sec. Neurify combines symbolic
interval analysis with linear relaxation to compute tighter
output bounds and uses off-the-shelf solvers to derive more
precise bounds for ReLLUs. These interval analysis techniques
lend themselves well to parallelization, as independent linear
programs can be created and checked in parallel. By contrast,
D&C-Marabou creates partitions of the original query and
solves them in parallel. Neurify supports a selection of hard-
coded benchmarks and properties and often requires modi-
fications to support new properties, while Marabou provides
verification support for a wide range of properties.

Our work is inspired by the Cube-and-Conquer algo-
rithm [18]], which targets very hard SAT problems. Cube-and-
Conquer is a divide-and-conquer technique that partitions a
Boolean satisfiability problem into sub-problems by conjoin-
ing cubes —a cube is a conjunction of propositional literals—
to the original problem and then employing a conflict-driven
SAT solver [35] to solve each sub-problem in parallel. The
propositional literals used in cubes are chosen using look-
ahead [36] techniques. Our approach uses similar ideas, but in
the VNN domain.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a set of techniques that leverage
parallel computing to improve the scalability of neural network
verification. We described an algorithm based on partitioning
the verification problem in an iterative manner and explored
two strategies that work by partitioning the input space or by
splitting on ReLUs, respectively. We introduced a branching
heuristic and a direction heuristic, both based on the notion
of polarity. We also introduced a highly parallelizable pre-
processing algorithm for simplifying neural network verifica-
tion problems. Our experimental evaluation shows the benefit
of these techniques on existing and new benchmarks. A pre-
liminary experiment with ultra-scaling using the gg platform
on Amazon Lambda also shows promising results.

Future work includes: i) Investigating more dynamic strate-
gies for choosing hyper-parameters of the D&C framework.
ii) Investigating different ways to interleave iterative propaga-
tion with D&C. iii) Investigating the scalability of ReLU-based
partitioning to high levels of parallelism. iv) Improving the
performance of the underlying solver, Marabou, by integrating
conflict analysis (as in CDCL SAT solvers and SMT solvers)
and more advanced bound propagation techniques such as
those used by Neurify. v) Extending the techniques to handle

other piecewise-linear activation functions such as hard tanh
and leaky ReL.U, to which the notion of polarity applies.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

K. D. Julian, M. J. Kochenderfer, and M. P. Owen, “Deep neural
network compression for aircraft collision avoidance systems,” Journal
of Guidance, Control, and Dynamics, vol. 42, no. 3, pp. 598-608,
2019. [Online]. Available: https://doi.org/10.2514/1.G003724

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1106—
1114.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal processing magazine, vol. 29,
no. 6, pp. 82-97, 2012.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
in ICLR (Poster), 2014.

M. Cissé, Y. Adi, N. Neverova, and J. Keshet, “Houdini: Fooling deep
structured prediction models,” CoRR, vol. abs/1707.05373, 2017.

A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in ICLR (Workshop). OpenReview.net, 2017.

L. Pulina and A. Tacchella, “An abstraction-refinement approach to
verification of artificial neural networks,” in CAV, ser. Lecture Notes
in Computer Science, vol. 6174. Springer, 2010, pp. 243-257.

——, “Challenging SMT solvers to verify neural networks,” Al Com-
mun., vol. 25, no. 2, pp. 117-135, 2012.

L. M. de Moura and N. Bjgrner, “Z3: an efficient SMT solver,” in
TACAS, ser. Lecture Notes in Computer Science, vol. 4963. Springer,
2008, pp. 337-340.

C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in CAV, ser. Lecture
Notes in Computer Science, vol. 6806. Springer, 2011, pp. 171-177.
G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer, “Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks,” in Proc.
29th Int. Conf. on Computer Aided Verification (CAV), 2017, pp. 97-117.
S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal se-
curity analysis of neural networks using symbolic intervals,” in 27th
{USENIX} Security Symposium ({USENIX} Security 18), 2018, pp.
1599-1614.

——, “Efficient formal safety analysis of neural networks,”
in Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada,
2018, pp. 6369-6379. [Online]. Available: http://papers.nips.cc/paper/
7873-efficient-formal-safety-analysis-of-neural-networks

R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” in International Symposium on Automated Technology for
Verification and Analysis. ~Springer, 2017, pp. 269-286.

G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim,
P. Shah, S. Thakoor, H. Wu, A. Zelji¢ et al., “The marabou framework
for verification and analysis of deep neural networks,” in International
Conference on Computer Aided Verification, 2019, pp. 443—452.

M. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube and conquer:
Guiding CDCL SAT solvers by lookaheads,” in Haifa Verification Con-
ference, ser. Lecture Notes in Computer Science, vol. 7261. Springer,
2011, pp. 50-65.

M. J. H. Heule, O. Kullmann, and V. W. Marek, “Solving and verifying
the boolean pythagorean triples problem via cube-and-conquer,” in SAT,
ser. Lecture Notes in Computer Science, vol. 9710. Springer, 2016, pp.
228-245.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in /CML. Omnipress, 2010, pp. 807-814.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, vol. 30, no. 1,
2013, p. 3.

[22]

(23]

[24]

[25]

[26]

[27]

[28]
[29]

[32]

[33]

[34]

[35]

[36]

G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Towards proving the adversarial robustness of deep neural networks,”
arXiv preprint arXiv:1709.02802, 2017.

D. Gopinath, H. Converse, C. Pasareanu, and A. Taly, “Property infer-
ence for deep neural networks,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Nov 2019, pp.
797-809.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving sat and sat modulo
theories: From an abstract davis— putnam-logemann—loveland procedure
to dpll(z),” J. ACM, vol. 53, no. 6, pp. 937-977, 2006.

K. D. Julian, R. Lee, and M. J. Kochenderfer, “Validation of image-
based neural network controllers through adaptive stress testing,” arXiv
preprint arXiv:2003.02381, 2020.

“The MNIST database of handwritten digits Home Page,” http://yann.
lecun.com/exdb/mnist/.

S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis,
M. Zaharia, and K. Winstein, “From laptop to lambda: Outsourcing
everyday jobs to thousands of transient functional containers,” in 2079
USENIX Annual Technical Conference, USENIX ATC 2019, Renton,
WA, USA, July 10-12, 2019, 2019, pp. 475-488. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/fouladi

“AWS lambda,” https://docs.aws.amazon.com/lambda/index.html.

R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” CoRR, vol. abs/1705.01320, 2017. [Online]. Available:
http://arxiv.org/abs/1705.01320

N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh,
“Verifying properties of binarized deep neural networks,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vecheyv, “Ai2: Safety and robustness certification of neural networks
with abstract interpretation,” in 2018 IEEE Symposium on Security and
Privacy (SP). 1EEE, 2018, pp. 3-18.

G. Singh, T. Gehr, M. Mirman, M. Piischel, and M. Vechev, “Fast and
effective robustness certification,” in Advances in Neural Information
Processing Systems, 2018, pp. 10802-10813.

G. Singh, T. Gehr, M. Piischel, and M. Vechev, “An abstract domain for
certifying neural networks,” Proceedings of the ACM on Programming
Languages, vol. 3, no. POPL, pp. 1-30, 2019.

C. Liu, T. Armnon, C. Lazarus, C. Barrett, and M. J. Kochenderfer,
“Algorithms for verifying deep neural networks,” 2019.

J. P. M. Silva, I. Lynce, and S. Malik, “Conflict-driven clause learning
SAT solvers,” in Handbook of Satisfiability, ser. Frontiers in Artificial
Intelligence and Applications. I10S Press, 2009, vol. 185, pp. 131-153.
M. Heule and H. van Maaren, “Look-ahead based SAT solvers,” in
Handbook of Satisfiability, ser. Frontiers in Artificial Intelligence and
Applications. I0S Press, 2009, vol. 185, pp. 155-184.

http://www.deeplearningbook.org
https://doi.org/10.2514/1.G003724
http://papers.nips.cc/paper/7873-efficient-formal-safety-analysis-of-neural-networks
http://papers.nips.cc/paper/7873-efficient-formal-safety-analysis-of-neural-networks
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.usenix.org/conference/atc19/presentation/fouladi
https://docs.aws.amazon.com/lambda/index.html
http://arxiv.org/abs/1705.01320

A. More Details on gg-Marabou

APPENDIX

The gg platform is a tool for expressing parallelizable computations and executing them. To use it, the programmer expresses
their computation as fask graph: a dependency graph of tasks, where each task is an executable program (e.g., a binary or shell
script) that reads some input files and produces some output files. These output files can encode the result of the task, or an
extension to the task graph that must be executed in order to produce that result. In our implementation of the D&C algorithm
on top of gg, each task runs the base solver with a timeout. If the solver completes, the task returns the result, otherwise it
returns a task graph extension encoding the division of the problem into sub-queries.

The local part of the gg experiment is run on a machine with 24 Xeon E5-2687W v4 CPUs, 132GB RAM, running Ubuntu

20.04.

B. More Details on Evaluation of Techniques

We present here a more detailed report of the runtime performance of different configurations and Neurify, as shown in
Table [lIl We break down the ACAS Xu benchmark family by properties, and the other two benchmark sets by networks.
Fig. [6] shows the log-scaled pairwise comparisons between different configurations.

Bench. M I R S+D S+P S+D+P Neurify

[# inst.] S T S T S T S T S T S T S T
ACASI 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 17 32455 42 37125 37 33141 43 40936 42 36783 43 40107 45 558
ACAS2 34 17210 39 4863 39 4985 39 5456 39 8228 39 7074 33 4167
45 0 0 4 5461 4 5121 4 4042 4 4070 4 4156 4 88
ACAS3 3 9 3 10 3 12 3 13 3 91 3 83 3 0
45 42 18254 42 4900 42 4569 42 4826 42 6571 42 6295 42 742
ACAS4 3 5 3 11 3 12 3 11 3 100 3 87 3 0
45 42 6689 42 1468 42 2205 42 1609 42 3404 42 3159 42 49
ACAS 40 17224 45 4884 45 5009 45 5480 45 8419 45 7244 39 4167
180 101 57398 | 130 48954 125 45036 | 131 51413 | 130 50828 131 53717 | 133 1438
TinyTaxiNetl 11 1168 11 1579 11 370 11 356 11 337 11 357 11 85
100 84 27773 63 17883 89 14052 89 12521 89 14651 89 14683 81 7148
TinyTaxiNet2 23 3423 23 236 23 63 23 63 23 196 24 815 24 3
100 57 6136 47 6205 58 9027 58 9824 60 5932 60 7266 65 10
TinyTaxiNet 34 4591 34 1815 34 433 34 419 34 533 35 1172 35 88
200 141 33909 | 110 24088 147 23079 | 147 22345 | 149 20583 149 21949 | 146 7158
MNISTI 9 2178 11 3658 12 2190 12 1412 12 3682 13 5715 8 108
100 73 11880 47 12387 80 12999 80 15213 80 14090 80 13571 54 2285
MNIST2 2 171 5 3494 6 3246 7 3787 4 1782 9 9140 13 6
100 37 22069 17 5698 46 14576 46 14833 48 19026 47 15141 45 3247
MNIST3 0 0 3 5880 4 4244 7 6528 4 4492 7 4496 6 36
100 30 30469 14 9049 55 25201 57 29149 56 34509 58 39595 54 5108
MNIST 11 2349 19 13032 22 9680 26 11727 20 9956 29 19351 27 151
300 140 64418 78 27134 181 52776 | 183 59195 | 184 67625 185 68307 | 153 10640
All 85 24164 98 19731 101 15122 | 105 17626 99 18908 109 27767 | 101 4406
680 382 155725 | 318 100176 || 453 120891 | 461 132953 | 463 139036 465 143973 | 432 19236

TABLE II: Number of solved instances (S) and run time in seconds (T) of different configurations. For each family, top and
bottom rows show data for satisfiable (SAT) and unsatisfiable (UNSAT) instances respectively.

10

Pairwise Comparisons of Solvers

Rv. I
1000 -
< 100-
(O]
£
4
10
1 -5
100
I time (s)
S+D+P v. S+P
1000 -
)
()
£ 100
o
+
[a)
+
)
10
11 %
mn | |
1 10 100 1000
S+P time (s)
S+D+Pv. M
1000 -
)
(O]
£ 100
o
+
[a)
+
n
10
1%
1 10 100 1000
M time (s)

Rv.M
1000
< 100-
(O]
£
@
10
1,
1 10 100 1000
M time (s)
S+D+P v. S+D
@
()
£
o
+
fa)
+
)
.
& |
1 10 100 1000
S+D time (s)
S+D+P v. Neurify
7
1000 -
e Hoxa
@ %
(0]
£ 100
+
~ .
) -
10§
if
18%
1 10 100 1000

Neurify time (s)

Fig. 6: Pairwise comparison between different configurations on all benchmarks.

11

Family

a

o

¥ B4 O X + D

AcasXul
AcasXu2
AcasXu3
AcasXu4
MNIST1
MNIST2
MNIST3
TaxiNetl
TaxiNet2

Verification of Recurrent Neural Networks for
Cognitive Tasks via Reachability Analysis

Hongce Zhang'*, Maxwell Shinn?, Aarti Gupta', Arie Gurfinkel?,
Nham Le3, and Nina Narodytska*

! Princeton University, USA {hongcez, aartig}@princeton.edu
2 Yale University, USA maxwell.shinn@yale.edu
3 University of Waterloo, Canada {arie.gurfinkel, nv3le}@uwaterloo.ca
4 VMware Research, USA nnarodytska@vmware.com

Abstract. Recurrent Neural Networks (RNNs) are one of the most successful
neural network architectures that deal with temporal sequences, e.g., speech and
text recognition. Recently, RNNs have been shown to be useful in cognitive neu-
roscience as a model of decision-making. RNNs can be trained to solve the same
behavioral tasks performed by humans and other animals in decision-making ex-
periments, allowing for a direct comparison between networks and experimental
subjects. Analysis of RNNs is expected to be simpler than the analysis of neural
activity. However, in practice, reasoning about an RNN’s behaviour is still a chal-
lenging problem. In this work, we take an approach based on formal verification
for the analysis of RNNs. We make two main contributions. First, we consider the
cognitive domain and formally define a set of useful properties to analyse for a
popular experimental task. Second, we employ and adapt well-known verification
techniques for reachability analysis to our focus domain, i.e., polytope propaga-
tion, invariant detection, and counterexample-guided abstraction refinement. Our
experiments show that our techniques can effectively solve classes of benchmark
problems that are challenging for state-of-the-art verification tools.

1 Introduction

Deep neural networks are among the most successful artificial intelligence technolo-
gies making impact in a variety of practical applications, including computer vision
and natural language processing. Recently, recurrent neural networks (RNNs) have
been employed in cognitive neuroscience to help understand decision-making in hu-
mans and other animals [19122/33|25]]. One way to understand neural networks is to
formally analyse their properties. Indeed, formal verification of neural networks is a
rapidly growing research area [[15/41/29]). The main question that verification tackles is:
given a network structure and a set of properties, check whether a neural network fulfills
these properties. For example, properties may include whether an image is susceptible
to an adversarial perturbation in a computer vision classification task [29]], or whether a
controller avoids unnecessary turning action for an aircraft control problem [15].

A lot of progress has been made in verifying neural networks over the last few years.
The majority of work focuses on analysing feed-forward neural networks [15116/44127]],

* This work was mostly done during an internship at VMware Research.

while verification of recurrent neural networks has received significantly less atten-
tion [2039]). This could be due to the fact that conceptually, verification of recurrent net-
works is no different from verification of feed-forward networks if we assume that the
depth of unfolding is bounded. One can convert a recurrent network to a feed-forward
network by unfolding the network’s transition relation, i.e., by repeating it for a fixed
number of steps [2]. Unfortunately, in practice, the depth of the unfolding can be large
since we might need to repeat the transition relation more than a hundred times, leading
to deep networks. Reasoning about such deep networks remains challenging.

In this work, we propose a novel approach to analyse RNNs. The main idea is to
identify and exploit special properties of recurrent networks to aid efficient reasoning.
Here we focus on an important class of recurrent neural networks which are trained to
solve cognitive behavioral tasks [31], analogous to the tasks given to human and animal
subjects in decision-making studies. Subjects and trained networks exhibit similar task
performance as measured by response time and the probability of a correct response
across difficulty levels [[19]. Additionally, linear projections of RELU unit activations
correspond qualitatively and quantitatively to neural activity as measured through elec-
trophysiological recordings [19122/33125]]. Cognitive tasks can be solved with recurrent
networks which have a shallow transition relation, a deep unfolding depth, and, more
importantly, only few modes of operations. The domain specific properties of these
networks make them amenable to formal analysis. Our proposed approach employs
three building blocks for the analysis of these networks: polytope propagation, invari-
ant detection and counterexample-guided abstraction refinement (CEGAR) [6]. Poly-
tope propagation is feasible (an exact propagation up to some depth and approximate
afterward) because the transition relation of RNN is a shallow perception. Invariant
detection is possible because we have only a few modes of operation and each mode
spans over a prolonged time interval. Finally, CEGAR is effective because computed
approximate reachability regions are often sufficient to prove a property, so only a few
refinements are needed.

We make the following contributions. First, we analyse the cognitive domain and
define properties of the network that are important to verify in this domain. Second,
we propose new methods to verify properties of RNNs. Our approach consists of two
phases. We adapt the “easy-to-verify networks” paradigm for training recurrent net-
works. Then, we perform verification using a hybrid polytope propagation, invariant
detection and counterexample-guided refinement technique. Third, we perform a com-
parative analysis of our approach with several modern verification tools. We provide
insights on why these networks are hard to reason about for existing tools, like SMT-
based solvers. The main challenges are: how to handle an exponential number of poly-
topes during exact reachability analysis, and how/where to employ approximation while
enabling enough precision to prove the required properties. Our experimental results
demonstrate that our proposed techniques offer solutions in addressing these challenges.

In Section 2] we explain why and how RNN is used in cognitive domains. Section [3]
explains reachability analysis and our work to facilitate such analysis on RNN, followed
by experiments and discussion in Section @]

Fixation Stimulus presentation Response

i ’;ﬁ?»
u é#ﬂ
T

v I 13
X1 5 [21=0 o} ~ N (. 0%) zy =0
X a rh =0 w5 =0 b =1
y - k=nl +1 K=nl+n*+1
Time g q ‘I fixation stimulus presentation . response
I O . J
- % ng N Ny
(a) (b)

Fig. 1. (a) The random dot motion task [24]26] as shown to subjects (above), and as adapted for
a recurrent neural network via two inputs 21 and x2 and one expected output y (below). (b) An
unfolded RNN for n time steps. At each step the network consumes two inputs and emits an
output. The state space is represented by state neurons s?, j € [1,p], k € [1,n]. Each mode of
operation, fixation, stimulus and response, run for ns, n, and n, time steps, respectively.

2 RNNs for cognitive domains

RNNs have become increasingly important in neuroscience.Trained RNNs exhibit be-
havioral similarities to human and animal subjects [31/43]] in adapted versions of the
same cognitive tasks, and also show patterns of RELU unit activations that correspond
to signals from brain recordings [191223325]]. Thus, understanding the mechanism of
RNNs may have implications for linking brain activity to behavior. Here we focus on
the random dot motion task in perceptual decision-making.

Cognitive task. The random dot motion task (Figure[I] (a)) [24126] is a cognitive task
given to humans and other animals in order to study decision-making in the presence
of noisy stimuli [[L1]]. In this task, dots on a video screen move in random directions,
but with a mean direction either to the left or right. After a fixed duration stimulus
presentation, subjects must identify and report this mean direction of motion. Task dif-
ficulty varies trial to trial through increased or decreased total strength of motion in
either direction, known as motion coherence. Subjects interact with the task using eye
movements, as captured by a high-speed camera and real-time eye-tracking software.
This task consists of three phases:

— fixation: the subject initiates a trial by directing their gaze to the fixation cross at
the center of the screen,

— stimulus presentation: a moving dots stimulus (sensory evidence) is presented to
the subject for a fixed duration of time,

— response: the subject responds to the stimulus by directing their gaze to the left or
right target, indicating the perceived mean direction of motion.

Successful performance on this task is thought to rely on integrating the noisy sensory
evidence across time [20J21,2411]].

To adapt this task for a recurrent neural network (Figure [I{a)), the task elements
are encapsulated within two input streams x; and x5, and the expected output within
a single stream y. The first input z; represents the noisy stimulus (sensory evidence)
via a Gaussian random variable with fixed variance and non-zero mean, where positive

(negative) values indicate perceived rightward (leftward) direction of motion, and zero
indicates the lack of the stimulus on the screen. The second input x5 changes from 0
to 1 to indicate the beginning of the response period, which in this study was fixed to
the end of stimulus presentation. The expected output of the network y represents the
horizontal position of an eye movement, which is zero during the fixation and stimulus
presentation periods and +1 or -1 for the response period, matching the mean direction
of motion in a given trial.

Overview of the network. The RNN is trained to perform the random dot motion task.
Figure [T(b) shows a schematic representation of the recurrent network. The network
operates over n times steps. We split the interval [1, n] into three sub-intervals spanning
each of the three phases of the task: FXUSMURS = [1, n]. The fixation phase spans over
the interval FX = [1, ny], the stimulus presentation spans over the interval SM = [ns +
1,n5 4 n) and the response spans over the interval RS = [ny +ngs+1,ny +ns +n,l.
At each step, the network consumes an input signal 2* and produces an output signal
ok k=1,... n.

Network specification. Each input z* consists of two input values: z¥ and 5. The first
input, x¥, corresponds to the stimulus signal. Note that it is constant over the fixation
and response phases:

if k € SM then ¥ ~ N (1, 0?) otherwise z§ = 0 (1)

During the stimulus presentation phase, 2% are samples from a Gaussian distribution

with a task parameters 1 and o, where ;4 > 0 represents the case when dots (noisy
stimuli) move to the left, and 1 < 0 to the right. The second input, z5, k = 1,...,n, is
an indicator input that signals whether the network is in the response phase or not.

if k € Rs then z& = 1 otherwise 25 = 0)

At each step the network produced an output o*, k = 1,...,n. During training,
our loss function encouraged the output to stay 0 in FX U SM phases, and move toward
—1/1 during the RS phase.

The transition relation of the network for the cognitive task has the following struc-
ture, k=1,...,n:

Sk+1 = F(5k7 $k) = WrecRELU(Sk) + W’"Ik + brec (3)
o = O(s") = WourRELU(s") + bour, @

where RELU(z) = max(z,0), W, and b,.. are the recurrent connectivity matrix
and bias, respectively, W;,, is an input connectivity matrix, W, and b,,; are output
connectivity matrix and bias, respectively. We recall that the purpose of the network is
to mimic the cognitive experiment. During an experiment, the subject makes a decision,
e.g. left or right. Given a trained RNN R, we define a decision function of the network,
Cr(0), as follows:

1 if o > 0.5,Vk € [n —r,n],
Cr(o)=<¢ —1 ifo* < —-05,Vk € [n—r,n], Q)
0 otherwise,

Given an input z, we say that the network chooses 1 if the last outputs are above 0.5,
where 7 is a parameter specified by a user. The network chooses —1 if the last » outputs
are below —0.5. No decision is made otherwise.

Training the network. In order to train the network with a similar reward structure
to human and animal subjects, we wanted the network to make a choice of £1 during
the response period, even when the stimulus was ambiguous. This reflects the fact that
subjects are only rewarded for correct responses, so a random response will be rewarded
on 50% of trials but a failure to respond is never rewarded. Under a mean squared
error loss, an optimal network would not make a choice if the stimulus was unclear. To
encourage the network to guess, we designed a loss function such that a random choice
of 1 has a lower expected value than a zero output. This was accomplished using a
slope proportional to the square root of the error for outputs ranging from -1 to 1, and
squared error outside of this region. More concretely, the loss function is defined as

L= Y =0+ hy'o)
teFXuSM teRs
1+ (oxsign(y) +1)%, o xsign(y) < —1
h(y,0) = < (Joxsign(y) — 1|/2)'/2, —1 < oxsign(y) < 1
(oxsign(y) — 1)2, 1 < oxsign(y)

Properties of the network. We highlight several properties relevant to verification of
the above recurrent network. First, as the network encodes a simple behavioral pattern,
the transition relation can be described with a small numbers of neurons. Second, the
network dynamics mimic the three phases of the original experiment, so it has only
three modes of operation. We can disregard the first phase during verification because
all inputs are constants. Third, the input signal is well defined in the sense that points are
sampled from a known distribution. This contrasts with computer vision tasks, where
we cannot formally define all images of cars, for example. Finally, the depth of the
recurrent network is large (110 time steps where the first 10 fixation steps can be pre-
computed).

Properties to verify. We define a set of properties for networks that solve the random
dot motion task.

Property 1 checks whether the network always makes the correct choice when all evi-
dence falls above (below) a given threshold value of p > 0 (p’ < 0), where p and p’ are
parameters of the property:

min (z¥) > p = Cr(0) =1, (6)
keSM
max (z}) < p' = Cr(o) = —1. (7
keSM

In other words, if the stimulus is sufficiently strong, the network should output the
correct response.

A weaker version of this property focuses on testing a hypothesis about the mech-
anism of this network. While classical theories of decision-making [20i21] suggest
that subjects integrate (in the mathematical sense) sensory evidence over time, recent

approaches have questioned this perspective [32040045U34]]. This weaker version tests
whether there exists a stream of sensory evidence which indicates the network is not
integrating all available information. It verifies whether the network always makes the
correct choice given a sufficiently large mean strength of evidence:

i ¥ _
Zn—>p:>C’R(o):1; Zn—<p = Cr(o) = —1.
keSM ! keSM 7

Property 2 checks whether an instantaneous large sample at the j-th point can trigger
a choice when opposed by all remaining evidence.

(z] <p) A (Vk € SM\ {j}, 2} > p) = Cr(0) =1, (®)
(#] > p) A (VK € SM\ {j}, 2} < p/) = Cr(0) = —L ©)

If subjects do not integrate sensory evidence, alternative hypotheses imply that an in-
stantaneous spike in evidence may trigger a choice [40/34/32], even if it opposes the
mean direction of evidence. This property tests if evidence at a single point can trigger
a choice despite consistent sensory evidence in the opposite direction.

In our experiments, we focus on verification of |Property 1| and [Property 2| We also
define the following property for future exploration.

Property 3 checks whether there exists an input that leads to oscillating output state or
a change in decision during the last steps:

max (] of — o1]) > 1, (10)
ke[n—r,n]

where r is a parameter specified by a user. Subjects experience changes of mind in
the random-dot motion task [23]. These changes were not explicitly discouraged in the
behavioral task, and likewise, are not explicitly penalized by objective function.

3 Overview of the proposed approach

Our approach consists of two phases. In the first phase we train an easier to verify
network following ideas from [42]]. While we had to adapt this approach to work for
recurrent neural networks, we achieved a significant reduction of the network size with-
out losing performance on the main cognitive task. We discuss our result of the first
phase in Appendix [B]

In the second phase, we perform property verification on RNN via reachability anal-
ysis. Suppose the property is of the form C(s%, 2%, 2,...) = P(o"), where C is
a predicate on initial state and inputs, and P is a predicate on the network output at
step n. In reachability analysis, we start from Reach'® = s° and compute the set of
reachable states at step i, Reach'” : {s | s' = F(si1, 2171, s'~! € Reach®~"} for
each layer until reaching layer n, where F is as defined in (3). Then, we compute the
output range based on Reach™ and check if it all satisfies P. To this end, we need to
(a) have a representation of the set of reachable states, and (b) compute the reachable
set for each layer till the final output.

We use a finite union of convex polytopes as the representation of the reachable
set on a layer. We compute the reachable set layer by layer, which we call propagating
polytopes. The computation for propagating polytopes is essentially applying piecewise
affine transformation, and the details are given in Appendix [C] As the number of poly-
topes usually increases along with the number of layers, we discuss two techniques here
to keep the representation tractable.

3.1 The CEGAR Approach

Abstraction via over-approximation is a common approach to cope with an increasing
number of polytopes. One abstraction is to group the polytopes that are close to each
other and use their convex hull (computed from their vertices) as the abstraction of the
reachable regions. Testing the distances between each pair of polytopes is expensive.
Instead, we use a simple heuristic: we group the sub-polytopes that come from the
same polytope in the previous layer. This heuristic is based on the fact that these sub-
polytopes are connected, and thus would not be too far from each other. This grouping
is an over-approximation — it can make unreachable states seem reachable, but not the
other way around. In the implementation, we start this abstraction when the number of
polytopes exceed a user-controlled threshold. We keep a record of the layer where we
start to use abstraction. For each abstracted polytope in this layer, we keep a reference
to the corresponding precise polytopes. Once abstraction is started in one layer, it is
also applied in all subsequent layers.

Sometimes, our abstraction is too coarse to prove the desired properties. In such
cases, we apply the counterexample-guided abstraction refinement (CEGAR) princi-
ple [6]. For a polytope P that intersects with the unsafe region where some property
fails, we backtrace to a polytope P ccise in the previous layer where we are about
to apply abstraction. From P,,.c.;se, W€ again start propagation, first using the exact
propagation method, until the threshold is reached again. This refinement may lead to
proving the property or obtaining a counterexample that cannot be refined (completely
inside the unsafe region). In either case, the CEGAR procedure on this polytope fin-
ishes. Otherwise, we again backtrace to refine the abstractions. The CEGAR loop is
guaranteed to terminate as it makes at least one refinement per iteration, and there are
only finitely many (though exponential) number of exact polytopes.

We note that our abstraction function (the convex hull of transformed polytopes)
and our refinement function (replace the convex hull with union of convex polytopes)
are an application of the standard finite-power-set domain from abstract interpretation
on the convex polytopes [3].

3.2 Learning Invariants

Another technique to avoid an explosion in the number of polytopes is to find polytopes
that represent a safe inductive invariant. For a given RNN with a fixed constraint on
the inputs for each layer, we can define an inductive invariant polytope similar to a
safe inductive invariant in a state transition system. We use) = F'(P) to denote the
image of P under transformation F'. If @) is completely inside P, then P is an inductive
invariant polytope. Unlike feed-forward networks, in RNN, P and @) are comparable

P v P P
0 Construct P; s.t. n
Pi - Pi—l A

> P2Qi '

Fl mmp F| oy o wmp F| 20
Mo, M. [/ o,

> L}
Fig. 2. Illustration of constructing safe inductive invariant polytopes.

as RNN uses the same hidden neurons for all iterations. Additionally, if such P is safe
(does not fall out of the safe region), we can conclude P and all states reachable from
P are safe. Thus, there is no need to propagate P further.

We construct an inductive invariant polytope from a given polytope as follows.
Given polytope Py, let Qo be its image (a union of convex polytopes). Py is an in-
ductive invariant if Q)¢ is contained in Fp. If this is not the case, let P; be the “join” of
Py and Q) (therefore, by construction, P; O Qg and P, O Fp). If P; contains its image
@1, then P is inductive. If not, let P, be the “join” of P; and ()1, and we continue to
check on P,. This process continues until either P; becomes inductive or unsafe. If P,
becomes inductive, we successfully find a safe inductive invariant polytope P; which
contains the given polytope Fy. If P; becomes unsafe, the construction fails as our re-
laxation creates too abstract a polytope. We will go with the exact image of Py (namely
(o) and try in the next layer if we can construct a safe inductive invariant polytope from
any polytope in Q. This procedure is illustrated in Figure [2] We elaborate the “join”
operation used above in Appendix

4 Experimental Evaluation

Network specification. The network specification is as described by transitions (G-
@), where s* € R” k € [1,n]. We unfold the network for 110 steps, so ny =10, ns =
50 and n, = 50. Inputs of the network are specified in Section 2] The parameters of
the stimulus noise are as follows: 4 is from a given set: C' = U{—2" /1000, 2" /1000},
where h € {0} U [4,10], and o = 0.3. We use TensorFlow via PsychRNN [1]] to train
RNNS. For the choice function @), we used r = 10. Verification is done on a machine
with 15-8300H CPU and 32GB of memory.
Property specification. We consider [Property 1| and [Property 2} For [Property 1} we
limit the stimulus to be in a range (all positive or all negative) for a bounded input space,
and test the strong version of within that range. We constructed 30 ranges
using coherence values C' from the training data. Ranges are in the form [c-279s1&2() ¢.
295181(%)] where ¢ € Upe(0,5,7,9,10y{ —2"/1000, 2" /1000}, and 6 € {0.2,0.5,0.7}. For
we enumerate a few positions of the pulses at the i-th input, (i € {1, ...,4}),
while keeping the rest in a fixed range in the opposite direction (in similar ranges as
Property 1)

We set 100 minutes as the timeout limit for each stimulus range. For simplicity, we
name our methods as PP (polytope propagation with interval arithmetic), CEGAR (PP

plus counterexample-guided abstraction refinement) and Inv. (PP plus invariant con-
struction). For CEGAR, the polytope bound to start approximation is set to be as small
as 50 to favor a more abstract representation.

NNV framework. NNV is used for direct comparison to the polytope propagation
methods we used. It is a MATLAB toolbox for neural network verification and performs
reachability analysis using the star set representation [36]]. Polytopes can be precisely
captured by this representation. As the number of star sets increases, NNV can also
over-approximate the reachable region on a layer using an interval hull. We refer to the
exact and interval hull approximation methods as NN'V-ex. and NNV-app., respectively.

Marabou. Marabou is an SMT-based tool that answers queries about network prop-
erties by solving constraint satisfaction problem [[16]. Here it serves as a comparison
using the SMT or MILP-based methods. For Marabou, the RNN is first unrolled to
form a feed-forward network.

SPACER model checker. We have also experimented with SPACER [[17], a state-of-
the-art model checker included in Z3 [7]. SPACER has been successfully applied for
verification of a variety of recurrent models in the domain of software verification,
smart-contract analysis, and verification of control systems. Conceptually, SPACER is
also based on polytope propagation. However, it propagates an under-approximation of
bad states backwards from a property violation towards the initial condition. Through-
out, it generalizes the polytopes based on symbolic reasoning on the transition relation.
Unlike other techniques in this paper, SPACER is based on symbolic (as opposed to nu-
meric) computation, using infinite precision arithmetic and symbolic quantifier elimina-
tion. While it is able to solve variants of Property 1, the running time is not competitive
(over 20 hours). The main bottleneck is the blow up due to infinite precision arithmetic.
It would be interesting to explore whether similar techniques or ideas can be lifted to
the numerical setting.

The computation in polytope propagation is easily parallelizable to scale with the
number of threads since the polytopes on the same layer are independent. Therefore,
in our experiments, we focus on comparing single-thread performance and limit all
methods to using a single thread.

Metrics. The number of solved instances, within the time and resource limits, is one

of the metrics we can use to compare the performance. For solving time, we report the

average time-to-termination. In the time-out cases, the time-limit is counted instead.
Table 1. Summary of Results (Time in Seconds)

Property 1 ‘ ‘ Property 2
Regions PP CEGAR Inv. NNV-ex. NNV-app. MarabouH Regions Inv. NNV-ex.
Simple (19) f;fflfd (1).92 (1).92 (1).92 ;27.6 38 1?41.6 #. solved B
Positive (8) f;fﬁjfd 31050 2166 11339 6000 4494 6000 All (48) Ave:time (solved) 804.3 29.58
Negative (3) f:::;’ed 2000 2000 2000 3.5 3‘5 2000 Ave. time (all) 3510.4 2392.9
All (30) z ?:::,:;: %2 (2)5 27 ;9 25 (1)8 Uniquely solved 4 4

Evaluation results. For[Property 1} among the 30 stimulus ranges, 3 violate the prop-
erty: [m - 27% m - 2°], where m = 2°/1000, 6 € {0.2,0.5,0.7}. For the remaining
cases, the property is checked to be valid. According to the difficulty and the sign of the
checked stimulus ranges, we categorized them into three types:

— simple region (I): solvable by interval arithmetic.
— challenging regions: positive (II) and negative (III), both unsolvable by interval
arithmetic.

A summary of the experimental results is listed in Table[I] In general, our techniques
perform well on the simple regions and positive challenging regions, and NNV-ex. and
NNV-app. work well on the negative challenging regions. In positive challenging re-
gions, although NNV-app. on average takes the shortest time to terminate, its abstrac-
tion is too coarse to verify 5 of 8 ranges. The invariant method solves the most instances,
although on average it does not rank the fastest on the instances it can solve. The hybrid
polytope propagation method (PP) achieves the fastest time on most instances.

[Property 2]is shown to be harder than Property 1 as the spike in the opposite direc-
tion usually adds a significant disturbance on the states and drives the reachable region.
For this property, we only experimented with the Inv and NNV-ex. method. NNV-ex. is
capable of solving 6 more ranges, with a relatively lower average solving time. How-
ever, the two have the same number of uniquely solved instances. Although not tested
here, we expect the NNV-app. method will be able to solve more instances than NN'V-
ex. within the time-limit.

Discussion and Lessons Learned. For Property 1, the performance difference on the
positive and negative categories leads us to a further investigation on the underlying
causes. It turned out that the challenges in the positive regions are mainly the explo-
sion on the number of polytopes. Among them, the “invariant” method solves the most
regions in the time limit, as it saves the efforts of propagating safe polytopes. The chal-
lenges in the negative regions are mainly due to an increasing number of facets. The H-
and V-polytope representations are known to have issues in scaling with an exponential
increase in number of facets; this is also the reason that our methods fail in the nega-
tive regions (in the experiments, the number of facets quickly increased to 10° within
the first 15 timesteps). On the other hand, the star set representation is able to handle
better a large number of facets, since it uses a higher dimension space for coefficients
and does not keep the representation of facets in the original space. This trade-off delays
the blow-up. However, it cannot substitute for polytope representation. For containment
check (required by the invariant method), one still needs to convert the star-set represen-
tation to projected H- and V-polytopes. And as the previous work noted, obtaining the
convex hull (required by the CEGAR method) on the star set representation becomes
more expensive [42].

For Property 2, in the case of having a spike in evidence in the opposite direction,
there is no clear separation between where the number of polytope dominates vs. where
the number of facets dominates. The two challenges are now mixed up. To successfully
verify this property, the analysis method must be able to handle both the exponential
increase of the number of polytopes and the exponential increase of the number of
facets. Exploring solutions to both challenges is left for future work.

References

10.

11.

12.
13.

14.

15.

16.

17.

19.

. PsychRNN. jhttps://github.com/dbehrlich/PsychRNN| (last visited: Feb 18, 2020)
. Akintunde, M.E., Kevorchian, A., Lomuscio, A., Pirovano, E.:. Verification of rnn-

based neural agent-environment systems. In: AAAIL 2019. pp. 6006-6013. AAAI Press
(2019). https://doi.org/10.1609/aaai.v33101.33016006, |https://doi.org/10.1609/aaai.v33i01.
33016006

. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Craig interpretation. In: SAS 2012.

pp. 300-316 (2012). https://doi.org/10.1007/978-3-642-33125-1_21, https://doi.org/10.1007/
978-3-642-33125-1.21

. Bagnara, R., Hill, PM., Zaffanella, E.: Widening operators for powerset domains. In: VM-

CAI 2004. pp. 135-148 (2004). https://doi.org/10.1007/978-3-540-24622-0_13, https://doi.
org/10.1007/978-3-540-24622-0_13

. Bagnara, R., Hill, PM., Zaffanella, E.: The parma polyhedra library: Toward a complete set

of numerical abstractions for the analysis and verification of hardware and software systems.
Science of Computer Programming 72(1-2), 3-21 (2008)

. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-

finement. In: CAV. pp. 154-169. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

. De Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: TACAS. pp. 337-340 (2008)
. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization. Constraints

23(3), 296-309 (2018)

. Fukuda, K.: An efficient implementation of the double description method. https://github.

com/cddlib/cddlib (2018)

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.T.: AI2:
safety and robustness certification of neural networks with abstract interpretation. In: IEEE
Symposium on Security and Privacy, SP 2018. pp. 3—18. IEEE Computer Society (2018).
https://doi.org/10.1109/SP.2018.00058| https://doi.org/10.1109/SP.2018.00058

Gold, J.I., Shadlen, M.N.: The neural basis of decision making. Annual Review of Neuro-
science 30(1), 535-574 (jul 2007). https://doi.org/10.1146/annurev.neuro.29.051605.113038
Goodfellow, 1., Bengio, Y., Courville, A.: Deep Learning. The MIT Press (2016)

Gopinath, D., Taly, A., Converse, H., Pasareanu, C.S.: Finding invariants in deep neural
networks. CoRR abs/1904.13215 (2019), http://arxiv.org/abs/1904.13215

Griinbaum, B., Kaibel, V., Klee, V., Ziegler, G.: Convex Polytopes. Graduate Texts in Math-
ematics, Springer (2003), https://books.google.com/books?1d=51V75P9gIUgC

Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An efficient
SMT solver for verifying deep neural networks. In: CAV. pp. 97-117 (2017)

Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor, S.,
Wu, H., Zeljic, A., Dill, D.L., Kochenderfer, M.J., Barrett, C.W.: The Marabou framework
for verification and analysis of deep neural networks. In: CAV. pp. 443-452 (2019)
Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-Based Model Checking for Recursive
Programs. In: CAV 2014. pp. 17-34 (2014). https://doi.org/10.1007/978-3-319-08867-9_2,
https://doi.org/10.1007/978-3-319-08867-9_2

. Ma, S, Liu, Y., Tao, G., Lee, W., Zhang, X.: NIC: detecting adversarial samples with neu-

ral network invariant checking. In: 26th Annual Network and Distributed System Security
Symposium, NDSS 2019. The Internet Society (2019), https://www.ndss-symposium.org/
ndss-paper/nic-detecting-adversarial-samples- with- neural-network-invariant-checking/
Mante, V., Sussillo, D., Shenoy, K.V., Newsome, W.T.: Context-dependent computa-
tion by recurrent dynamics in prefrontal cortex. Nature 503(7474), 78-84 (nov 2013).
https://doi.org/10.1038/nature 12742

https://github.com/dbehrlich/PsychRNN
https://doi.org/10.1609/aaai.v33i01.33016006
https://doi.org/10.1609/aaai.v33i01.33016006
https://doi.org/10.1609/aaai.v33i01.33016006
https://doi.org/10.1007/978-3-642-33125-1_21
https://doi.org/10.1007/978-3-642-33125-1_21
https://doi.org/10.1007/978-3-642-33125-1_21
https://doi.org/10.1007/978-3-540-24622-0_13
https://doi.org/10.1007/978-3-540-24622-0_13
https://doi.org/10.1007/978-3-540-24622-0_13
https://github.com/cddlib/cddlib
https://github.com/cddlib/cddlib
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1146/annurev.neuro.29.051605.113038
http://arxiv.org/abs/1904.13215
https://books.google.com/books?id=5iV75P9gIUgC
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-319-08867-9_2
https://www.ndss-symposium.org/ndss-paper/nic-detecting-adversarial-samples-with-neural-network-invariant-checking/
https://www.ndss-symposium.org/ndss-paper/nic-detecting-adversarial-samples-with-neural-network-invariant-checking/
https://doi.org/10.1038/nature12742

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Ratcliff, R.: A theory of memory retrieval. Psychological Review 85(2), 59-108 (1978).
https://doi.org/10.1037/0033-295x.85.2.59

Ratcliff, R., Smith, PL., Brown, S.D., McKoon, G.: Diffusion decision model: Cur-
rent issues and history. Trends in Cognitive Sciences 20(4), 260-281 (apr 2016).
https://doi.org/10.1016/j.tics.2016.01.007

Remington, E.D., Narain, D., Hosseini, E.A., Jazayeri, M.: Flexible sensorimotor computa-
tions through rapid reconfiguration of cortical dynamics. Neuron 98(5), 1005-1019.e5 (jun
2018). https://doi.org/10.1016/j.neuron.2018.05.020

Resulaj, A., Kiani, R., Wolpert, D.M., Shadlen, M.N.: Changes of mind in decision-making.
Nature 461(7261), 263-266 (aug 2009). https://doi.org/10.1038/nature08275

Roitman, J.D., Shadlen, M.N.: Response of neurons in the lateral intraparietal area during a
combined visual discrimination reaction time task. The Journal of neuroscience : the official
journal of the Society for Neuroscience 22, 9475-9489 (Nov 2002)

Russo, A.A., Bittner, S.R., Perkins, S.M., Seely, J.S., London, B.M., Lara, A.H., Miri, A.,
Marshall, N.J., Kohn, A., Jessell, T.M., Abbott, L.F., Cunningham, J.P., Churchland, M.M.:
Motor cortex embeds muscle-like commands in an untangled population response. Neuron
97(4), 953-966.e8 (feb 2018). jhttps://doi.org/10.1016/j.neuron.2018.01.004

Salzman, C.D., Britten, K.H., Newsome, W.T.: Cortical microstimulation influences
perceptual judgements of motion direction. Nature 346(6280), 174-177 (jul 1990).
https://do1.org/10.1038/346174a0

Singh, G., Gehr, T., Mirman, M., Piischel, M., Vechev, M.T.: Fast and effective ro-
bustness certification. In: NIPS. pp. 10825-10836 (2018), http://papers.nips.cc/paper/
82'78-fast-and-effective-robustness-certification

Singh, G., Gehr, T., Piischel, M., Vechev, M.: An abstract domain for certify-
ing neural networks. Proc. ACM Program. Lang. 3(POPL), 41:1-41:30 (Jan 2019).
https://do1.org/10.1145/3290354, http://dot.acm.org/10.1145/3290354

Singh, G., Gehr, T., Piischel, M., Vechev, M.T.: Boosting robustness certification of neural
networks. In: ICLR 2019 (2019), https://openreview.net/forum?id=HJ geEh09KQ

Singh, G., Piischel, M., Vechev, M.: Fast polyhedra abstract domain. In: ACM SIGPLAN
Notices. vol. 52, pp. 46-59. ACM (2017)

Song, H.F, Yang, G.R., Wang, X.J.: Training excitatory-inhibitory recurrent neural networks
for cognitive tasks: A simple and flexible framework. PLOS Computational Biology 12(2)
(feb 2016). https://doi.org/10.1371/journal.pcbi. 1004792

Stine, G.M., Zylberberg, A., Ditterich, J., Shadlen, M.N.: Differentiating between in-
tegration and non-integration strategies in perceptual decision making (January 2020).
https://doi.org/10.1101/2020.01.24.918169

Sussillo, D., Churchland, M.M., Kaufman, M.T., Shenoy, K.V.: A neural network that finds a
naturalistic solution for the production of muscle activity. Nature Neuroscience 18(7), 1025—
1033 (jun 2015). https://doi.org/10.1038/nn.4042

Thura, D., Beauregard-Racine, J., Fradet, C.W., Cisek, P.: Decision making by urgency gat-
ing: theory and experimental support. Journal of Neurophysiology 108(11), 2912-2930 (dec
2012). https://doi.org/10.1152/jn.01071.201 1

Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with mixed
integer programming. In: ICLR (2019)

Tran, H.D., Cai, F., Diego, M.L., Musau, P., Johnson, T.T., Koutsoukos, X.: Safety veri-
fication of cyber-physical systems with reinforcement learning control. ACM Trans. Em-
bed. Comput. Syst. 18(5s), 105:1-105:22 (Oct 2019). https://doi.org/10.1145/3358230, http:
//doi.acm.org/10.1145/3358230

Tran, H., Lopez, D.M., Musau, P., Yang, X., Nguyen, L.V., Xiang, W., Johnson, T.T.:
Star-based reachability analysis of deep neural networks. In: FM2019. pp. 670-686.

https://doi.org/10.1037/0033-295x.85.2.59
https://doi.org/10.1016/j.tics.2016.01.007
https://doi.org/10.1016/j.neuron.2018.05.020
https://doi.org/10.1038/nature08275
https://doi.org/10.1016/j.neuron.2018.01.004
https://doi.org/10.1038/346174a0
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification
https://doi.org/10.1145/3290354
http://doi.acm.org/10.1145/3290354
https://openreview.net/forum?id=HJgeEh09KQ
https://doi.org/10.1371/journal.pcbi.1004792
https://doi.org/10.1101/2020.01.24.918169
https://doi.org/10.1038/nn.4042
https://doi.org/10.1152/jn.01071.2011
https://doi.org/10.1145/3358230
http://doi.acm.org/10.1145/3358230
http://doi.acm.org/10.1145/3358230

38.

39.

40.

41.

42.

43.

44.

45.

LNCS, Springer (2019). https://doi.org/10.1007/978-3-030-30942-8_39, https://doi.org/10.
1007/978-3-030-30942-8_39

Vengertsev, D., Sherman, E.: Recurrent neural network properties and their verification with
monte carlo techniques (2020)

Wang, Q., Zhang, K., Liu, X., Giles, C.L.: Verification of recurrent neural networks through
rule extraction. CoORR abs/1811.06029 (2018), http://arxiv.org/abs/1811.06029

Waskom, M.L., Kiani, R.: Decision making through integration of sensory evi-
dence at prolonged timescales. Current Biology 28(23), 3850-3856.9 (dec 2018).
https://doi.org/10.1016/j.cub.2018.10.021

Weng, T., Zhang, H., Chen, H., Song, Z., Hsieh, C., Daniel, L., Boning, D.S., Dhillon, L.S.:
Towards fast computation of certified robustness for relu networks. In: ICML. pp. 5273-5282
(2018)

Xiao, K.Y., Tjeng, V., Shafiullah, N.M.M., Madry, A.: Training for faster adversarial ro-
bustness verification via inducing relu stability. In: ICLR 2019. OpenReview.net (2019),
https://openreview.net/forum?1d=BJfIVjAcKm

Yang, G.R., Joglekar, M.R., Song, H.F., Newsome, W.T., Wang, X.J.: Task representations
in neural networks trained to perform many cognitive tasks. Nature neuroscience 22(2), 297
(2019)

Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network robustness
certification with general activation functions. In: NIPS. pp. 4944-4953 (2018)

Zoltowski, D.M., Latimer, K.W., Yates, J.L., Huk, A.C., Pillow, J.W.. Dis-
crete stepping and nonlinear ramping dynamics underlie spiking responses of
LIP neurons during decision-making. Neuron 102(6), 1249-1258.e10 (jun 2019).
https://doi.org/10.1016/j.neuron.2019.04.031

https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
http://arxiv.org/abs/1811.06029
https://doi.org/10.1016/j.cub.2018.10.021
https://openreview.net/forum?id=BJfIVjAcKm
https://doi.org/10.1016/j.neuron.2019.04.031

Appendix
A Background

Feed-forward neural networks. A feed-forward neural network (FNN) is a function that
takes an input € R<, applies a sequence of transformations and produces an output
vector 0, o € RP. Transformations are usually grouped in blocks called layers. Each
layer is a composition of a linear and a non-linear transformation. Each layer produces
an intermediate representation a‘*) € RP*, k € [1,m)]. The first layer takes the input =
and produces an intermediate state a‘!) that is passed to the next layer. The final layer
takes (™1 as an input and produces an output o. A network can be described as a
composition of functions, assuming a(!) = x, as follows:

ak 0 = £ (W k) L5k ke [1,m — 1] an
0= f’m(W<m>a<m> + b<m>)7 (12)

where f; is a non-linear function, W) is a linear transformation matrix and b*) is a
bias vector at the kth layer, k& € [1,m].

Recurrent neural networks. A Recurrent Neural Network (RNN) is a neural network
that operates over a sequence of inputs [12]]. At each time-step k, a network consumes an
input ¥ and its hidden state s*, produces the next hidden state s*** and an output o*.
A simple version of recurrent network can be described using the following transition
function:

P = F(Wyees® + Wina® + bree), (13)
0% = g(Wours* + bout), (14)

where f and g are non-linear functions, Wi.cc, Win, Wout, brec and b, are parameters
to learn. In this work, f and g are RELU operators. We define the exact structure of the
network in Section 2] If we assume that the length of input is bounded by n, we can
transform an RNN to a feed-forward network by unrolling the transition relation of an
RNN for n time steps, e.g. [12]]. There are two main structural differences between feed-
forward networks and recurrent neural networks that are relevant from the verification
standpoint. The first difference is the depth of the networks. As RNNs operate over
long input sequences, unrolling the transition relation leads to deep networks with a
large number of layers. Therefore, the resulting unfolded network is very challenging to
reason about for both complete and incomplete methods. The second difference is that
feed-forward networks apply different transformations on each layer, whereas unrolled
recurrent networks use the same transformation.

Polytope and its representation. We recall the definition of a closed convex polytope
(or polytope for short) and its two representations: V-polytope and H-polytope [14]. A
V-polytope is a convex hull of a finite set Y = {y',... y"} of points in R%:

V-P = conv(Y) := {Z Ay | A1, A >0, Z A =1}
i=1 i=1

An ‘H-polytope is the solution of a finite system of linear inequalities:
H-P = H_P(Aab) = {y € Rd | a,zry < biai € [Lm]}

R™*4d is a real matrix with

assuming that the set of solutions is bounded, where A €
rows a] and b € R™ is a real vector with entries b;.

A polytope is a convex closed subset P of R? that can be represented as a V-polytope
or an H-polytope. We use both representations in our algorithms. There are existing
libraries, for example CDD [9] and PPL [3]], which provide the functionality for the

conversion between the two representations.

Mixed Integer Linear Programming (MILP). We briefly overview MILP technology as
we use it for the polytopes propagation. MILP solves linear problems over a set of inte-
ger and real valued variables. MILP contains a set of decision variables, a set of linear
constraints over these variables and an objective function to be optimized (minimized or
maximized) that is linear in decision variables. Without loss of generality we consider

a minimization formulation of a MILP. Let x4, ..., z, be a set of decision variables, a
mixed integer linear program can be written as
min Z Ci®; (15)
i
subject to Zaijxi >bj,j € [1,m] (16)
i
x; € 7,1 €14,
z;, € R,i €Dy,

where 7 is a set of indices of integer variables and 75 is a set of indices of real variables,
Il UIQ = [1,71] .

Interval Arithmetic or Bound Propagation. Interval arithmetic computes the upper and
lower bounds for a layer based on the bounds of the previous layer. It is a fast but
relatively conservative bound estimation. Recently, Xiao et al. [42] proposed an im-
provement: to estimate the bound of a layer, it backtracks as much as possible rather
than directly using the bounds of the previous layer. This gives a tighter bound without
incurring much computational overhead.

B Train an easier-to-verify RNN

In the first phase of our approach, we train a recurrent network that is simpler to verify
for decision procedures, like MILP or SMT solvers [42]. There are two main bottlenecks
for decision procedures to reason about neural networks. The first issue is that there is a
large number of variables in linear constraints, like a typical linear constraint used
in a MILP formulation of a network [[8]. For example, if we have a fully-connected layer,
the number of variables in (I3) is equal to the number of neurons in the previous layer.
The second issue is the presence of RELU = max(z,0) operators in a MILP or SMT
formulation as these are piecewise linear functions. Each piecewise linear transforma-
tion introduces a binary branching factor for the solver. Note that the number of max op-
erations is equal to the number of neurons in the network. In [42], Xiao et al. initiated re-

search on training easier to verify networks and introduced two techniques, weight spar-
sification and RELUSs stabilization, which are very effective for feed-forward networks.

The main idea of RELUS stabilization is to train a network in such a way that piece-
wise linear functions, RELUs, are linearized. We say that a neuron sf is stable if for
all possible inputs of the network sign(lb(s¥)) = sign(ub(s¥)), where 1b(sF) is the

smallest value that a neuron can take and ub(sY) is the largest value that a neuron can

3

take for all possible inputs. We encourage stabilization of RELUs during the training
by using bounds propagation techniques and adding an extra term to the loss function.
Note that if lower and upper bounds of s¥ have the same sign then we know that RELU
degenerates to a linear function from a piece-wise linear function. We applied stabiliza-
tion of neurons in our training procedure. Interestingly, we found that there are state
neurons s¥ such that ub(s%) < 0, k € [1,n]. In other words, there is s¥ that is stable
for all k. This means that RELU(sf) = 0 at all time steps signaling that a state space
can be reduced. Hence, we reduce the number of state neurons and retrained the smaller
network from scratch. Surprisingly, our re-training procedure was extremely effective
in reducing the network size. For example, we have successfully reduced the size of the
state vector from 50 to 7.

50] 1.00
2 a0
< g
(0]
& 301 £075
o« o
o G2
#* 20 a
— N = 50
10 1 — =7
T T T T 050 B T T T
1 5 10 13 0.016 0.128 1.024
of iterations Mean value of stimulus
(a) Neuron pruning (b) Comparison before and

after pruning

Fig. 3. Reducing RNN for easier verification.

We also experimented with weight sparsification from [42]]. This idea consists of
(a) using the L1 regularization during the training to encourage small weights and (b)
setting small weights, i.e. weights that are smaller than a given threshold, to zero as a
post-processing step. However, we noted that the quality of the network is very sen-
sitive to weights sparsification. We were not able to achieve significant reductions in
the number of non-zero parameters compare to results reported in [42]. However, it is
not surprising. Note that if we zero one element of a transformation matrix in (3)—@),
we zero this weight at each timestamp as the same matrix is used at each step. Hence,
an RNN’s structure seems to be less favorable to weights sparsification compared to
feed-forward networks.

C Polytope propagation

The core of reachability analysis is to efficiently propagate the reachable set throughout
the network. Our general method of propagating a polytope over one layer is presented
as the function PROPAGATEPOLYTOPEONELAYER in Algorithm [T} It takes a polytope in

Algorithm 1: PROPAGATEPOLYTOPEONELAYER(W e, Win, brecs H, I): Prop-
agate one polytope for one layer.

Input: Wy.cc, Wi, brec, : weights and bias of a layer, H: H-representation of the polytope to propagate, I:
input constraints.

Output: P, set of polytopes.

1 Poyt < O

2 F <+ ENCODEMILP(Wreca Win, brec);

3 C+ HANINF;

4 A < GETFEASIBLEASSIGNMENTS(C');

5 foreacha € Ado

6

7

8

9

RS < RELUSTATUSCONSTR(a);

Psyp < HAIARS;

Vsub <= GETVERTICES(Psyp);

T < GETTRANSFORMMATRIX(Wyec, Win, brec, a);

10 Vo < MATRIXMUL(T, Vius);
1 H!,, < GETHRESP(V/,,);
12 Pout + Pour U {POLYTOPE(V,,,,, H...1)}

13 return P, ¢;

one layer as an input and maps it to a set of convex polytopes in the next layer. We
first encode the given polytope and input/output relation of a layer as an MILP prob-
lem and use a solver to find sub-polytopes, such that each can be linearly mapped to
obtain a convex polytope in the next layer (essentially a linearization of ReL.U). In this
process, we make use of both - and V-representations. We omit showing the function
PROPAGATEPOLYTOPE for the whole network, which simply loops through polytopes and
layers using Algorithm I}

The MILP encoding. We follow an MILP encoding [8] that uses binary indicator
variables and slack variables for ReLU activation functions. We use the IBM ILOG
CPLEX solver to solve the MILP problem. CPLEX computes all feasible assignments of
the indicator variables. This is represented by the function GETFEASIBLEASSIGNMENTS
in Algorithm [I]

Example C1. Consider an RNN with two neurons (n = 2) and one input, and the
following weight matrices:

0.1 0.2 0.2 —0.2
T O T R

Suppose for a layer k, a polytope to propagate is givenas: H = {0.1 < 8k < 0.2,1.0 <
sk < 1.2}, = {—1 < 2k < 1} (where $* represents max(s”*,0)). This is a polytope
in 3-D space as shown in Figure [ffa). The linearly mapped polytope (before ReLU)
is shown in Figure @]b). By solving an MILP problem, we can get the set of feasible
indicator variable assignments { (0, 0), (1, 0), (0, 1)}, where the three tuples correspond

L xl){ S{(+l §f+l
I
‘ I\Y 0.2 A | I 0.2
o]
I 0114 d 0.1+
- it {
sk L it S | 00 —_—
Lo — v e
S, -0. . H - -0. - T T
= 02 010 OTTTE 0.0 02 sk*t T o0 o1 o2 St
(a) Input polytope (b) After linear transformation (c) Output polytopes

Fig. 4. Polytope propagation on Example[CI}

to the three pieces marked as I, II and IV, and value 1 of the indicator variable implies
the corresponding ReL.U is inactive (output stays 0), while value O indicates the ReLU is
active (output is equal to input). Each of the three pieces is itself a polytope (therefore
a sub-polytope) and will be mapped differently by the ReLUs, as the mapping from
Figure f{b) to (c) shows.

Get the representation of each sub-polytope. As each sub-polytope corresponds to a
different RelLU activation status, its H-representation can be constructed by adding the
ReLU status constraints, which are generated by the function RELUSTATUSCONSTR. It
constrains the sign of ReL.U inputs according to a given indicator variable assighment.
For instance, for sub-polytope II in Example the two ReLUs are (inactive, active).
Therefore it has the following ReLU status constraint (here ® and < are element-wise
product and comparison on vectors):

(17 _1)T ® (Wrec(glga §If>T + melg + brec) S 0

Apply transformation for each sub-polytope. For each sub-polytope obtained in the
previous step, we construct a transformation matrix that captures its unique ReLLU map-
ping and the same linear mapping related to the weights and bias. This matrix operates
on the V-representation (which can be obtained from #-representation using conversion
functions in libraries like PPL or CDD, as represented by GETVERTICES in Algorithm T}
After applying the transformation on vertices, we reconstruct the #-representation of
the new polytope using existing libraries (function GETHRESP). In Example (b),
sub-polytope I to IV are subject to different mapping, and the resulting polytopes are
shown in Figure [CT](c).

An additional note on the implementation: when constructing the 7{-representation
we take special care for the degenerate polytopes (low-dimensional polytopes in a high-
dimensional space). They are first projected into an appropriate low-dimensional space
where we construct the H-representation. We use singular value decomposition (SVD)
for dimensionality reduction and its results provide the projection matrix to and from
the low-dimensional space. This allows us to interchangeably use the QuickHull and
the double description methods in computing H-representation, as on certain cases one
outperforms the other. On the other hand, ELINA [30] and PPL [5] use only double
description method in the conversion as QuickHull suffers from degenerate cases.

The above describes finding - and V-representation of a given polytope after ap-
plying linear and ReL.U transformation. Our implementation uses generic polytope li-
braries (QuickHull and CDD) and existing algorithms. The results are sensitive to nu-
merical errors that are incurred by underlying tools. We believe that these errors are
insignificant, e.g. CPLEX precision error is 10~%. This is a common trade-off between
numeric and symbolic methods.

Bound estimation with polytope propagation. Propagating polytopes provides the
most precise description of the reachable state space. However, it might be sufficient
to just propagate an interval hull. For each polytope P, we estimate the interval bound
on the output layers, which gives us a bounding box B around the output using the
algorithm proposed by Xiao ef al. [42]. If B is sufficient to conclude that network’s
output is safe, we skip the polytope propagation and use B instead.

D Joining polytopes

In Section [3.2] we use a “join” operation that produces a convex polytope containing
the given polytopes. There are different choices on its implementation. Theoretically,
to guarantee the termination of the above iterative procedure, the standard widening
operator from the finite powerset of convex polytopes [4] can be used. However, it could
be too abstract as each of its application either results in an increase of the dimension
of the polytope or in a decrease of the number of constraints. On the other hand, the
tight join achieved using the convex hull of polytopes could incur a higher computation
cost, and it might take more iterations (or never) get to a fixed point. Here, we propose
a light-weight join operator using constraint relaxation. For an H-polytope P : {y €
R? | al'y < b;,i € [1,m]}, joined with a V-polytope Q : conv({y*,...,y"}), we
relax the constraints aly < b;,i € [1,m] for each vertex of Q. If for a vertex y*, the
left-hand-side of the i-th inequality constraint a_ y is greater than the right-hand-side
b;, we increase b; to match with a} y. Geometrically, this is equivalent to translating the
hyperplanes that form P to include (). Additionally, to ensure the resulted polytope is
still closed, we intersect it with the smallest box that contains all vertices of P and Q).

E Related work

A complete verification framework guarantees that a method either proves that the
property holds or finds a counterexample to this property. For example, frameworks
like Reluplex [15], Marabou [16]], MIPVerify [35] provide complete verification algo-
rithms. These frameworks are based on Satisfiablity Modulo Theories (SMT) or/and
MILP search engines. Another complete verification approach is to perform reacha-
bility analysis [37/36]. Representing the exact reachable space often results in high
computation cost. Therefore reachability analysis is usually combined with abstraction
techniques [10/28]], resulting in an incomplete verification framework. Compared to the
previous work [37] that uses the star set representation for exact analysis, our usage of
the generic H- and V-polytope representations allows us to leverage existing polytope
libraries, and these representations are more friendly for convex hull computation and
invariant construction.

An incomplete verification framework provides a method that either guarantees that
a given property holds, or it remains unknown whether the property holds. Examples
of such frameworks are FastLin [41], Crown [44], and DeepZ [27]]. The main idea is
to perform safe approximate reasoning about the behaviour of a network. If the ap-
proximate reasoning is sufficient to prove a property, an incomplete method succeeds;
otherwise it fails. When the number of layers is large, e.g., more than a hundred lay-
ers, over-approximation methods tend to produce loose bounds which could negatively
impact the ability of checking certain properties.

Another relevant line of work is invariant detection in feed-forward networks. The
term invariant was previously used in the verification efforts of feed-forward networks
to refer to a region in the input space that implies the same output property [18]. In
another work [13], the authors propose to search for invariance properties that form
decision patterns of neurons activations. In our work, the term invariant refers to an

inductive invariant (well-studied in state transition systems), i.e., it refers to a region in
the input space of a layer whose image (output region) does not fall outside the region,
under the same mode of operation.

Finally, Vengertsev ‘et al. [38]] define a set of state and temporal safety properties for
RNNS, and use a Monte Carlo approach to verify the defined properties. Their approach
is based on probabilistic verification, inherently different from the reachability analysis.

F Experiments (additional tables)

Here we report the detailed experiment results for Property 1 and 2 (Table[2]and [3)). For
Property 1, in regions with Category I, the solving time is usually less than a second for
our methods, whereas NN V-exact and NNV-app. will suffer from increasing numbers
of star sets. After the rounding, CEGAR and inv. may report the same number in time
as PP, but in general PP has the lowest overhead in region I. Although NNV-app. always
terminates under the time limit, in some cases, it is not precise enough to prove validity
of the property. Marabou (used as a comparison with SMT solvers) terminates only for
some regions in Category I.

For Property 2, among the 48 stimulus regions, 3 are checked to guarantee the cor-
rect prediction even in presence of the spike on the opposite direction, 30 are shown
to be vulnerable to the spike and the remaining 15 regions are still in unknown status
(unlike Property 1, where there is no remaining stimulus regions left unchecked). The
difficulty of Property 2 comes from the mix of challenges of both the large number of
polytopes and the large number of facets in a polytope — this points to a direction for
future work.

Table 2. Results of Experiments on Property 1 (time in seconds)

6 w lower bound upper bound Category |PP

CEGAR inv. ‘NNV—ex. NNV-app. ‘Marabou Fastest

0.001 0.000871
0.032 0.027858
0.2 0.128 0.111430
0.512 0.445722
1.024 0.891444

0.001 0.000708
0.032 0.022627
0.5 0.128 0.090510
0.512 0.362039
1.024 0.724077

0.001 0.000616
0.032 0.019698
0.7 0.128 0.078793
0.512 0.315173
1.024 0.630346

-0.001 -0.001149
-0.032 -0.036758
0.2 -0.128 -0.147033
-0.512 -0.588134
-1.024 -1.176267

-0.001 -0.001415
-0.032 -0.045255
0.5 -0.128 -0.181019
-0.512 -0.724077
-1.024 -1.448155

-0.001 -0.001626
-0.032 -0.051984
0.7 -0.128 -0.207937
-0.512 -0.831746
-1.024 -1.663493

0.001149
0.036758
0.147033
0.588134
1.176267

0.001415
0.045255
0.181019
0.724077
1.448155

0.001626
0.051984
0.207937
0.831746
1.663493

-0.000871
-0.027858
-0.111430
-0.445722
-0.891444

-0.000708
-0.022627
-0.090510
-0.362039
-0.724077

-0.000616
-0.019698
-0.078793
-0.315173
-0.630346

0.17
0.17
0.17
0.17

0.17 0.18 0.18 0.18 120.38 PP
0.17 0.17 0.19 0.19 108.57 |PP
0.17 0.17 T.O. 14548 |T.O. PP
0.17 0.17 T.O. 61.31 2489.49 |PP
0.18 0.17 T.O. 202.50 |22.14 |PP
0.17 0.17 0.18 0.18 116.31 (PP

42.80
150.50
T.O.

99.70 2328 |T.O. (372.70)* |T.O. inv
390.10 489.27 |T.O. (707.00)* |T.O. PP
2026.70 942.63 |T.O. (104.10)* |T.O. inv
T.O. 824.06 |T.O. 273.60 |T.O. NNV-app.

14430 33.22 |T.O. (627.80)* |T.O. inv
537.20 468.29 |T.O. (807.90)* |T.O. inv
T.O. 5556.55|T.O. 290.50 |T.O. NNV-app.
2534.50 733.53 |T.O. 411.80 |T.O. NNV-app.

0.16 0.16 0.14 0.14 140.90 |NNV-ex
0.16 0.16 0.24 0.24 216.09 |PP
0.16 0.16 0.38 0.38 199.49 (PP
0.17 0.17 0.22 0.22 199.96 (PP
0.16 0.16 0.23 0.23 5031.62 |PP
0.16 0.16 0.11 0.11 139.00 |NNV-ex

0.31 0.30 0.99 0.99 4920.96 PP
T.O. T.O. 0.55 0.55 T.O. NNV-ex.
T.O. T.O. 0.53 0.53 T.O. NNV-ex.

* NNV-app. terminates with unknown (abstraction is too coarse).

Table 3. Results of Experiments on Property 2 (time in seconds)

b u lower bound upper bound pulse position‘Invariant NNV—exact‘ Safe
1 18.75 0.70 X
2 3.5 0.43 X
0.001 0.000871 0.001149 3 45 0.35 X
4 5.3 0.37 X
1 3145.8 3.57 X
2 4546.6 1.25 X
0.2 0.032 0.027858 0.036758 3 238 0.41 X
4 24.8 0.35 X
1 7244 T.O. 4
2 T.O. T.O. ?
0.128 0.111430 0.147033 3 18022 TO. v
4 12.9 T.O 4
1 T.O. T.O ?
2 883.0 TO X
0.032 0.019698 0.051984 3 TO T.O 9
4 T.O T.O ?
1 T.O T.O ?
2 T.O T.O ?
0.7 0.128 0.078793 0.207937 3 TO T.O 9
4 T.O T.O ?
1 T.O T.O ?
2 T.O T.O ?
0.512 0.315173 0.831746 3 TO TO 2
4 T.O T.O ?
1 511 46.12 X
2 304.6 43.74 X
-0.001 -0.001149 -0.000871 3 504.6 4137 X
4 470.6 39.82 X
1 133.1 45.93 X
2 390.2 43.14 X
0.2 -0.032 -0.036758 -0.027858 3 2236 40.85 X
4 3291.5 38.78 X
1 T.O 46.23 X
2 T.O 39.87 X
-0.128 -0.147033 -0.111430 3 TO 35.52 X
4 21.9 32.54 X
1 207.3 4592 X
2 1245.5 43.29 X
-0.032 -0.051984 -0.019698 3 TO 40.11 X
4 T.O 38.14 X
1 T.O 47.21 X
2 T.O 37.89 X
0.7 -0.128 -0.207937 -0.078793 3 TO 32.46 X
4 T.O 26.16 X
1 T.O 45.21 X
2 T.O T.O ?
-0.512 -0.831746 -0.315173 3 TO TO ?
4 T.O T.O ?

	preface
	pc
	reviewers
	author_index
	keyword_index
	toc
	paper_12
	paper_3
	paper_11
	paper_5
	Robustness Verification for Ensemble Stumps and Trees

	paper_8
	paper_2
	An Abstraction-Based Framework for Neural Network Verification

	paper_7
	Simplifying Neural Networks using Formal Verification

	paper_6
	paper_1
	Verifying Recurrent Neural Networks using Invariant Inference

	paper_13
	Incorrect by Construction: Fine Tuning Neural Networks for Guaranteed Performance on Finite Sets of Examples

	paper_5
	Robustness Verification for Ensemble Stumps and Trees

	paper_9
	Introduction
	Preliminaries
	Formalizing Neural Networks
	The Reluplex Procedure

	D&C: Parallelizing the Reluplex Procedure
	The D&C algorithm
	Partitioning Strategies
	Polarity-based Branching Heuristics
	Fixing ReLU Constraints with Iterative Propagation
	Speeding Up Satisfiable Checks with Polarity-Based Direction Heuristics

	Experimental Evaluation
	Implementation
	Benchmarks
	Experimental Evaluation
	Evaluation of the techniques on ACAS Xu, TinyTaxiNet, MNIST
	Costs of Iterative Propagation
	Ultra-Scalability of D&C

	Related Work
	Conclusions and Future Work
	References
	More Details on gg-Marabou
	More Details on Evaluation of Techniques

	paper_4
	Verification of Recurrent Neural Networks for Cognitive Tasks via Reachability Analysis

